www.freemaths.fr

TLE Technologique Mathématiques

(STI2D & STL)

Intégrale, Synthèse

ÉNONCÉ DE L'EXERCICE

INTÉGRALES, SYNTHÈSE

Partie A

On considère la fonction h définie sur l'intervalle $[0; +\infty[$ par : $h(x) = xe^{-x}$.

- 1. Déterminer la limite de la fonction h en $+\infty$.
- 2. Étudier les variations de la fonction h sur l'intervalle $[0; +\infty[$ et dresser son tableau de variations.
- 3. L'objectif de cette question est de déterminer une primitive de la fonction h.
 - **a.** Vérifier que pour tout nombre réel x appartenant à l'intervalle $[0; +\infty[$, on a :

$$h(x) = e^{-x} - h'(x)$$

où h' désigne la fonction dérivée de h.

- **b.** Déterminer une primitive sur l'intervalle $[0; +\infty[$ de la fonction $x \mapsto e^{-x}$.
- c. Déduire des deux questions précédentes une primitive de la fonction h sur l'intervalle $[0; +\infty[$.

Partie B

On définit les fonctions f et g sur l'intervalle $[0; +\infty[$ par :

$$f(x) = xe^{-x} + \ln(x+1)$$
 et $g(x) = \ln(x+1)$.

On note C_f et C_g les représentations graphiques respectives des fonctions f et g dans un repère orthonormé.

Ces deux courbes sont tracées en annexe.

- 1. Pour un nombre réel x appartenant à l'intervalle $[0; +\infty[$, on appelle M le point de coordonnées (x; f(x)) et N le point de coordonnées (x; g(x)): M et N sont donc les points d'abscisse x appartenant respectivement aux courbes C_f et C_g .
 - **a.** Déterminer la valeur de *x* pour laquelle la distance MN est maximale et donner cette distance maximale.
 - **b.** Placer sur le graphique fourni en annexe les points M et N correspondant à la valeur maximale de MN.
- 2. Soit λ un réel appartenant à l'intervalle $[0; +\infty[$. On note D_{λ} le domaine du plan délimité par les courbes C_f et C_g et par les droites d'équations x = 0 et $x = \lambda$.
 - a. Hachurer le domaine D_{λ} correspondant à la valeur λ proposée sur le graphique en annexe.
 - **b.** On note A_{λ} l'aire du domaine D_{λ} , exprimée en unités d'aire. Démontrer que :

$$A_{\lambda} = 1 - \frac{\lambda+1}{e^{\lambda}}$$
.

c. Calculer la limite de A_{λ} lorsque λ tend vers $+\infty$ et interpréter le résultat.

3. On considère l'algorithme suivant :

Variables:

 λ est un réel positif

S est un réel strictement compris entre 0 et 1.

Initialisation:

Saisir S

 λ prend la valeur 0

Traitement:

Tant Que $1 - \frac{\lambda+1}{e^{\lambda}} < S$ faire

 λ prend la valeur $\lambda + 1$

Fin Tant Que

Sortie:

Afficher λ

- **a.** Quelle valeur affiche cet algorithme si on saisit la valeur S = 0.8?
- **b.** Quel est le rôle de cet algorithme ?

ANNEXE

