www.freemaths.fr

TLE Technologique Mathématiques

(STI2D & STL)

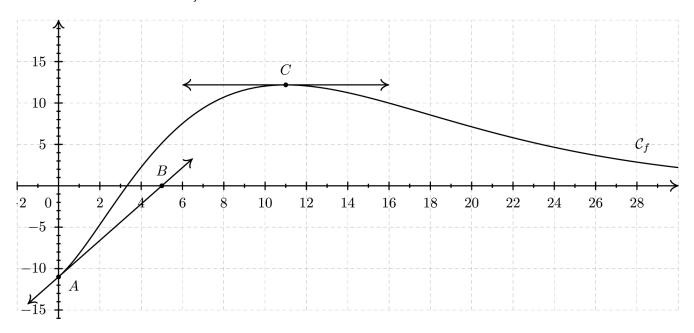
Intégrale, Synthèse

ÉNONCÉ DE L'EXERCICE

INTÉGRALES, SYNTHÈSE

Dans le repère orthogonal donné ci-dessous, C_f est la représentation graphique d'une fonction f définie et dérivable sur [0; 30].

La tangente à la courbe C_f au point A d'abscisse 0 passe par le point B (5 ; 0). La tangente à la courbe C_f au point C d'abscisse 11 est parallèle à l'axe des abscisses.



Dans toute la suite, on note f' la dérivée de la fonction f sur [0; 30] et F une primitive de f sur [0; 30].

Partie A – Lectures graphiques

- **1.** Lire graphiquement les valeurs de f(0), f'(0) et f'(11).
- **2.** L'affirmation « La fonction F est croissante sur [0; 11]. » est-elle vraie ou fausse ? Justifier.

Partie B – Étude d'une fonction

La fonction f est définie sur [0; 30] par :

$$f(x) = (x^2 - 11)e^{-0.2x}$$
.

Un logiciel de calcul formel donne les résultats suivants :

	Instruction :	Résultat :
1	$f(x) := (x^2 - 11) * \exp(-0.2 * x)$	$(x^2 - 11)e^{-0.2x}$
2	$D\acute{eriv\acute{e}e}(f(x))$	$(-0.2x^2 + 2x + 2.2)e^{-0.2x}$
3	Intégrale(f(x))	$(-5x^2 - 50x - 195)e^{-0.2x}$

- **1.** Pour tout réel $x \in [0; 30]$, justifier le résultat de l'instruction obtenu en ligne 2 du logiciel.
- **2.** Étudier le signe de f' sur [0; 30] puis dresser le tableau des variations de f sur [0; 30].
- **3.** Démontrer que l'équation f(x) = 0 admet une unique solution α sur [0; 11] puis donner une valeur approchée de α à 10^{-2} près.
- **4.** En utilisant sans le démontrer un résultat du logiciel, calculer la valeur exacte puis l'arrondi à 10^{-2} de l'intégrale : $I = \int_{10}^{20} f(x) dx$.

Partie C - Application économique

Dans cet exercice, les résultats seront arrondis à 10^{-2} si nécessaire.

La fonction de demande d'un produit est modélisée sur l'intervalle [5;30] par la fonction f étudiée dans la **partie B**.

Le nombre f(x) représente la quantité demandée, exprimée en centaines de milliers d'objets, lorsque le prix unitaire est égal à x euros.

- **1.** Calculer le nombre d'objets demandés, au millier près, lorsque le prix unitaire est fixé à 15 euros.
- **2.** En utilisant les résultats de la **partie B**, déterminer la demande moyenne, arrondie au millier d'objets, lorsque le prix unitaire varie entre 10 et 20 euros.
- 3. L'élasticité E(x) de la demande par rapport au prix est le pourcentage de variation de la demande pour une augmentation de 1% du prix.

On admet qu'une bonne approximation de E(x) est donnée par :

$$E(x) = \frac{f'(x)}{f(x)} \times x$$
 lorsque $x \in [5; 30]$.

Calculer E(15) et interpréter le résultat.