www.freemaths.fr

Maths Expertes Terminale

Nombres Premiers

CORRIGÉ DE L'EXERCICE

Modulo p premier

Correction

Nous rappelons l'énoncé du théorème de Gauss, que nous aurons l'occasion d'utiliser.

« Soit a, b, c des entiers relatifs. Si a divise le produit $b \times c$ et s'il est premier avec b, alors il divise c ».

Intéressons-nous également aux hypothèses « a non congru à 0 modulo p » (question 1) et « a premier avec p » (question 2).

D'après l'énoncé, p est un nombre premier, il n'a que deux diviseurs. Par conséquent, étant donné un entier relatif a, le PGCD de p et de a ne peut prendre que deux valeurs, ou bien p ou bien 1. De deux choses l'une : ou bien p divise a ou bien p et a sont premiers entre eux. Les hypothèses des questions 1 et 2 sont donc équivalentes ; nous lisons deux formulations différentes pour exprimer une même chose. Il est certain qu'il s'agit d'une volonté délibérée de l'auteur du sujet.

1. Montrons que, si $a \not\equiv 0$ [p], $ax \equiv ay$ [p] $\Rightarrow x \equiv y$ [p]:

NB. Comme nous l'avons indiqué en préambule, p étant un nombre premier, l'hypothèse « $a \not\equiv 0$ [p] » est équivalente à l'hypothèse « a et p sont premiers entre eux ».

Soit x et y deux entiers relatifs. Supposons qu'ils vérifient la congruence : $ax \equiv ay \ [p]$.

Par définition d'une congruence modulo p, cette congruence est vérifiée si et seulement si p divise la différence ax-ay, c'est-à-dire si et seulement si p divise $a\times (x-y)$.

Or, p et a sont premiers entre eux. Nous pouvons appliquer le théorème de Gauss : l'entier p divise le produit $a \times (x - y)$ et il est premier avec a, donc il divise (x - y).

Par définition d'une congruence modulo p, dire que p divise (x - y) équivaut à dire que $x \equiv y$ [p].

Concluons:

Sous l'hypothèse $a \not\equiv 0$ [p], si x et y vérifient $ax \equiv ay$ [p], alors $x \equiv y$ [p].

Freemaths: Tous droits réservés

2. Montrons que si a est premier avec p et si n est multiple de p-1, alors $a^n \equiv 1 \ [p]$:

Dans cette question, n est un entier naturel. Dire que « n est multiple de p-1 » revient à dire qu'il existe un entier naturel k tel que n=k(p-1). C'est là l'entier k que nous allons utiliser ci-dessous.

Commençons par démontrer la congruence stratégique : $a^{p-1} \equiv 1$ [p].

- *p* est un nombre premier.
- Le nombre entier a n'est pas divisible par p (car par hypothèse p et a sont premiers entre eux).

Nous pouvons appliquer le petit théorème de Fermat.

D'après le petit théorème de Fermat : $a^{p-1} \equiv 1$ [p]

Nous pouvons dès lors élever à la puissance k (entier naturel comme nous l'avons noté) les deux membres de cette congruence.

Nous obtenons une nouvelle congruence modulo $p:(a^{p-1})^k\equiv 1^k \ [p].$

En tenant compte d'une part que $(a^{p-1})^k = a^{k(p-1)} = a^n$ et d'autre part que 1 est invariant par élévation à une puissance, cette congruence s'écrit aussi bien : $a^n = a^{k(p-1)} \equiv 1$ [p].

En conclusion, si n est un multiple de p-1: $a^n \equiv 1$ [p].

3. Si a est premier avec p, montrons l'existence d'un entier b tel que $ab \equiv 1 \ [p]$:

NB. L'entier p étant un nombre premier, il est supérieur ou égal à 2. Dans a^{p-2} , qui intervient dans la résolution de cette question, l'exposant p-2 est toujours un entier naturel, le nombre a^{p-2} est toujours un nombre entier non nul.

Soit a un entier relatif premier avec p. Appliquons le résultat de la **question 1** avec n=p-1 (voir la « congruence stratégique » de cette question) : $a^{p-1} \equiv 1$ [p].

Nous pouvons écrire cette congruence ainsi : $a \times a^{p-2} \equiv 1$ [p].

Nous obtenons le résultat recherché en considérant l'entier relatif $b=a^{p-2}$.

Pour tout entier a premier avec p, le nombre a^{p-2} est un inverse modulo p de a.

4. Déduisons-en que tout entier a tel que 0 < a < p admet un inverse modulo p strictement compris entre 0 et p:

L'entier p étant un nombre premier, il est premier avec tout entier a strictement positif qui est strictement plus petit que lui (c'est-à-dire avec tout entier a de l'ensemble $\{1,\ 2,\dots,\ p-1\}$). D'après la question précédente, tout élément a de cet ensemble a pour inverse modulo p, l'entier $b=a^{p-2}$.

Freemaths: Tous droits réservés

Soit alors r le reste de la division euclidienne de $b = a^{p-2}$ par p.

- D'une part $0 \le r < p$, mais r n'est pas nul (car a et p étant premiers entre eux, a^{p-2} et p sont aussi premiers entre eux : p ne divise pas a^{p-2}).
- D'autre part $r \equiv b$ [p] donc $ar \equiv ab$ [p] et, par transitivité, $ar \equiv 1$ [p]

Le reste r de la division euclidienne de a^{p-2} par p est un inverse modulo p de a qui vérifie la double inégalité 0 < r < p.

Complément offert par Freemaths, calcul automatisé à l'aide de Python de « l'inverse modulo p compris strictement entre 0 et p » :

L'algorithme « invmodulo » a pour argument un nombre premier p. Pour tout entier a de l'ensemble $\{2,\ 3,\dots,\ p-1\}$, l'algorithme calcule $b=a^{p-2}$ puis le reste r de la division euclidienne de $b=a^{p-2}$ par p et affiche les nombres b et r. L'algorithme procède ensuite à une vérification (facultative …), il vérifie que l'entier r est bien l'inverse modulo p compris entre 0 et p de l'entier a.

(Nous avons négligé volontairement le cas trivial de l'entier 1 qui a pour inverse modulo p lui-même).

Pour l'exemple, cet algorithme a été testé avec p=7. Il va de soi que les deux inverses proposés ne sont pas les seuls. Tous les entiers congrus modulo 7 aux deux nombres cités sont eux aussi des « inverses modulo 7 ».

```
>>> def invmodulo(p):
        for a in range(2,p):
                 b=a**(p-2)
                 r=b%p
                 v=(r*a)%p
                 print(a, "a pour inverses modulo",p, "les entiers",b, "et",r)
print(" Vérifions : Le produit",r, "x",a, "est congru à", v, "modulo",p)
>>> invmodulo(7)
2 a pour inverses modulo 7 les entiers 32 et 4
        Vérifions : Le produit 4 x 2 est congru à 1 modulo 7
3 a pour inverses modulo 7 les entiers 243 et 5
        Vérifions : Le produit 5 x 3 est congru à 1 modulo 7
4 a pour inverses modulo 7 les entiers 1024 et 2
       Vérifions : Le produit 2 x 4 est congru à 1 modulo 7
5 a pour inverses modulo 7 les entiers 3125 et 3
      Vérifions : Le produit 3 x 5 est congru à 1 modulo 7
6 a pour inverses modulo 7 les entiers 7776 et 6
       Vérifions : Le produit 6 x 6 est congru à 1 modulo 7
```