www.freemaths.fr

Maths Complémentaires Terminale

Suites arithmético-géométriques

CORRIGÉ DE L'EXERCICE

AGRICULTURE BIO

CORRECTION

- 1. a. Justifions que, pour tout entier naturel n, $U_{n+1} = 0$, 96 $U_n + 22$:
 - D'après l'énoncé, en 2018 il y a 300 pommiers par hectare.

D'où: $U_0 = 300$ pommiers.

- De plus, chaque année, Laurence:
 - élimine 4% des pommiers existants,
 - et, replante 22 nouveaux pommiers par hectare.

Soient: • U_{n+1} , le nombre de pommiers par hectare l'année 2018 + (n+1),

• U, le nombre de pommiers par hectare l'année 2018 + n.

Pour tout entier naturel n, le nombre total de pommiers par hectare l'année 20/8 + (n+1) est égal à celui U_n diminué de 4% et augmenté d'une quantité de 22 nouveaux pommiers.

Pour tout entier naturel n:

$$U_{n+1} = U_n - 4\% \times U_n + 22$$
 cad: $U_{n+1} = 0,96 \times U_n + 22$.

Au total, nous avons bien: $U_{n+1} = 0$, 96 x $U_n + 22$, pour tout $n \in IN$.

1. b. Estimons le nombre de pommiers par hectare en 2020:

L'année 2020 correspond à: n = 2.

freemaths.fr · Mathématiques

Il s'agit de calculer ici: U_2 .

•
$$U_1 = U_0 - 4\% \times U_0 + 22 \iff U_1 = 300 - 4\% \times 300 + 22$$

cad: $U_1 = 310$ pommiers.

•
$$U_2 = U_1 - 4\% \times U_1 + 22 \iff U_2 = 310 - 4\% \times 300 + 22$$

cad: $U_2 = 320$ pommiers.

Ainsi, le nombre de pommiers par hectare en 2020 sera d'environ: 320.

2. a. Recopions et complétons l'algorithme pour qu'il détermine le rang de l'année cherchée:

L'algorithme recopié et complété est le suivant:

$$N \leftarrow 0$$
 $U \leftarrow 300$
 $Tant que \quad U < 400$
 $|N \leftarrow N+1|$
 $|U \leftarrow 0,96 \times N+22$
Fin Tant que

2. b. Déterminons la valeur de " N " en sortie d'algorithme:

A l'aide d'une machine à calculer, nous obtenons: N = 13.

Ainsi, la valeur de " N " à la fin de l'exécution de l'algorithme est: N = 13.

3. a. Montrons que la suite (V_n) est géométrique de raison q et de premier terme V_0 que l'on précisera:

$$V_n = U_n - 550 \iff V_{n+1} = U_{n+1} - 550$$
, pour tout $n \in IN$

$$\iff V_{n+1} = (0, 96 \times U_n + 22) - 550 \quad (1).$$

Or:
$$V_0 = U_0 - 550 \implies V_0 = 300 - 550 = -250$$
 et $U_n = V_n + 550$.

Alors: (1)
$$\iff$$
 $V_{n+1} = (0, 96 [V_n + 550] + 22) - 550$
 \implies $V_{n+1} = 0, 96 V_n, pour tout $n \in IN$.$

Par conséquent, (V_n) est bien une suite géométrique de raison q = 0,96 et de premier terme $V_0 = -250$.

3. b. b1. Pour tout entier naturel n, exprimons V_n en fonction de n:

Comme $V_{n+1} = 0$, 96 V_n , d'après le cours nous pouvons affirmer que:

pour tout
$$n \in IN$$
, $V_n = V_0 \times (0, 96)^n$ cad: $V_n = -2.50 \times (0, 96)^n$.

3. b. b2. Pour tout $n \in IN$, montrons que $U_n = -2.50 \times (0, 96)^n + 550$:

Nous savons que pour tout
$$n \in IN$$
: $*V_n = -250 \times (0, 96)^n$
 $*U_n = V_n + 550$.

D'où pour tout $n \in IN$: $U_n = -250 \times (0, 96)^n + 550$.

3. c. Estimons le nombre de pommiers de Laurence en 2025:

L'année 2025 correspond à: n = 7.

D'où, le nombre de pommiers pour 1 hectare en 2025 sera de:

$$U_7 = -250 \times (0,96)^7 + 550$$
 soit: $U_7 \approx 362$ pommiers.

Or, il y a 14 hectares dans la ferme, par conséquent le nombre total de pommiers en 2025 sera de: $362 \times 14 \approx 5070$.

Au total, le nombre de pommiers de Laurence en 2025 sera d'environ: 5070.

3. d. Résolvons l'inéquation $U_n > 400$:

Nous allons déterminer " n " \in IN tel que: $U_n > 400$.

$$U_n > 400 \iff -2.50 \times (0, 96)^n + 550 > 400$$

$$\iff (0, 96)^n < \frac{3}{5}$$

$$\iff \mathbf{n} \cdot \ln(0, 96) < \ln\left(\frac{3}{5}\right)$$

$$\iff$$
 $n > \frac{\ln\left(\frac{3}{5}\right)}{\ln(0,96)}$, car: 0,96 \in]0; /[

 \Rightarrow n > 13 ans, car n est un entier naturel.

En conclusion: cela confirme bien le fait que 13 ans après l'année 2018, la densité de pommiers dépassera 400 pommiers par hectare.

Donc en 2031.