www.freemaths.fr

BACCALAURÉAT MATHÉMATIQUES

2023

LA DROITE 🛆

CORRECTION

1. a. Déterminons un vecteur directeur \overrightarrow{v} de la droite (d_2) :

Une représentation paramétrique de la droite (d2) est:

$$\begin{cases} x = 2 + -3 \\ y = + \\ z = 5 \end{cases}$$
, $t \in \mathbb{R}$.

Dans ces conditions, nous pouvons affirmer que: la droite (d_2) passe par le point de coordonnées (-3;0;5) et a pour vecteur directeur le

vecteur
$$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

D'où un vecteur directeur de la droite (d_2) est: $\vec{v} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$.

1. b. Montrons que les droites (d_1) et (d_2) ne sont pas parallèles:

Les vecteurs directeurs des droites (d_1) et (d_2) sont respectivement:

$$\vec{u} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \text{ et } \vec{v} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}.$$

Or:
$$x_{\overrightarrow{u}} = \frac{1}{2} \times x_{\overrightarrow{v}}$$
 et $y_{\overrightarrow{u}} \neq \frac{1}{2} \times y_{\overrightarrow{v}}$.

Les vecteurs \overrightarrow{u} et \overrightarrow{v} ne sont donc pas proportionnels **et, par conséquent,** ils ne sont pas colinéaires.

 \vec{u} et \vec{v} n'étant pas colinéaires: les droites (d_1) et (d_2) ne sont pas parallèles.

- I. c. Montrons que les droites (d_1) et (d_2) ne sont pas sécantes:
 - Une représentation paramétrique de la droite (d,) passant par le point

H(2;3;0) et de vecteur directeur
$$\overrightarrow{u}$$
 $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ est:
$$\begin{cases} x = 2 + 1 \times t^3 \\ y = 3 + (-1) \times t^3, t^3 \in \mathbb{R}. \\ z = 0 + 1 \times t^3 \end{cases}$$

• Une représentation paramétrique de la droite (d2) est:

$$\begin{cases} x = 2t - 3 \\ y = t \\ z = 5 \end{cases}$$
, $t \in \mathbb{R}$.

Le point d'intersection entre les droites (d_1) et (d_2) vérifie donc le système:

$$\begin{cases} 2+t'=2t-3 \\ 3-t'=t \\ t'=5 \end{cases} \iff \begin{cases} 2+t'=2t-3 \\ 3-5=t \\ t'=5 \end{cases} \iff \begin{cases} 7=-7 \text{ impossible !} \\ t=-2 \end{cases}$$

Donc aucun point d'intersection entre les droites (d_1) et (d_2) : ces dernières ne sont donc pas sécantes.

I. d. La position relative des droites (d_1) et (d_2) ?

Les droites (d_1) et (d_2) n'étant ni sécantes ni parallèles: elles ne sont pas coplanaires.

2. a. Vérifions que le vecteur $\overrightarrow{w} \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}$ est orthogonal $\overrightarrow{a} \overrightarrow{u}$ et $\overrightarrow{a} \overrightarrow{v}$:

Le vecteur \overrightarrow{w} est orthogonal \overrightarrow{a} \overrightarrow{u} et \overrightarrow{a} \overrightarrow{v} ssi: $\begin{cases} \overrightarrow{w} \cdot \overrightarrow{u} = 0 \\ \overrightarrow{w} \cdot \overrightarrow{v} = 0 \end{cases}$

Or:
$$\overrightarrow{w} \cdot \overrightarrow{u} = (-1 \times 1) + (2 \times (-1)) + (3 \times 1) = 0$$

 $\overrightarrow{w} \cdot \overrightarrow{v} = (-1 \times 2) + (2 \times 1) + (3 \times 0) = 0$

Comme $\overrightarrow{w} \cdot \overrightarrow{u} = 0$ et $\overrightarrow{w} \cdot \overrightarrow{v} = 0$: \overrightarrow{w} est bien orthogonal $\overrightarrow{a} \cdot \overrightarrow{u}$ et $\overrightarrow{a} \cdot \overrightarrow{v}$.

2. b. Montrons que l'intersection du plan P et de la droite (d_2) est le point M de coordonnées (3;3;5):

- Une représentation paramétrique de la droite (d_2) est: $\begin{cases} x = 2T 3 \\ y = t \end{cases}$, $t \in \mathbb{R}$.
- Une équation cartésienne du plan P est: 5x + 4y z 22 = 0.

Le point d'intersection M entre le plan et la droite (d_2) vérifie donc le système:

$$\begin{cases} x_{M} = 2 + -3 & (1) \\ y_{M} = + & (2) \\ z_{M} = 5 & (3) \\ 5x_{M} + 4y_{M} - z_{M} - 22 = 0 & (4) \end{cases}$$

A l'aide des équations (1), (2) et (3), nous pouvons écrire:

(4)
$$\iff$$
 $5x_M + 4y_M - z_M - 22 = 0 \iff$ $5 \times (2t - 3) + 4 \times (t) - 5 - 22 = 0$
 \iff $10t - 15 + 4t - 27 = 0$
 \iff $14 \times t - 42 = 0$
 $cad \ t = 3$

Les coordonnées du point M sont donc: $x_{\rm M} = 2 \times 3 - 3 = 3$ $y_{\rm M} = 3 = 3$ $z_{\rm M} = 5 = 5$

3. a. a, Justifions que les droites Δ et (d,) sont perpendiculaires:

Les droites Δ et (d_i) ont pour vecteurs directeurs respectifs: $\overrightarrow{\mathbf{w}} \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}$

et
$$\vec{u} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
.

Les droites Δ et (d_1) sont perpendiculaires ssi: $\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{u}} = \mathbf{0}$.

Or:
$$\vec{\mathbf{w}} \cdot \vec{\mathbf{u}} = (-/x/) + (2x(-/)) + (3x/) = \mathbf{0}$$
.

freemaths.fr · Mathématiques

Donc les vecteurs directeurs \overrightarrow{w} et \overrightarrow{u} et sont orthogonaux

Par conséquent: les droites Δ et (d.) sont bien perpendiculaires.

3. a. a,. Déterminons les coordonnées du point L:

Le point L est le point d'intersection entre les droites Δ et (d_i) .

L vérifie donc le système:
$$\begin{cases} -r+3=2+t'\\ 2r+3=3-t'\\ 3r+5=t' \end{cases}$$

$$\iff \begin{cases} 4 = 4 \\ r = -1 \\ t' = 2 \end{cases}$$

Les coordonnées du point L sont donc: $x_L = 2 + 2 = 4$

$$\cdot y_1 = 3 - 2 = 1$$

•
$$z_L = 2 = 2$$
.

3. b. Expliquons pour quoi la droite Δ est solution du problème posé:

OUI car Δ est bien perpendiculaire aux droites (d₁) et (d₂)!