www.freemaths.fr

BACCALAURÉAT MATHÉMATIQUES

AMÉRIQUE DU NORD

2023

$$f(x) = (x^2 - 5x + 6) e^x$$

CORRECTION

PARTIE A

I. Donnons le sens de variation de la fonction f sur IR:

Nous sommes en présence de la représentation graphique de la courbe de la dérivée f de f sur IR.

Au vu du graphique, nous pouvons dire que:

• f' est positive sur
$$\left]-\infty; \frac{1}{3}\right] \cup \left[\frac{5}{3}; +\infty\right[$$

•
$$f$$
 'est négative sur $\left[\frac{1}{3}, \frac{5}{3}\right]$.

Dans ces conditions: • fest croissante sur $\left]-\infty; \frac{1}{3}\right] \cup \left[\frac{5}{3}; +\infty\right[$

• fest décroissante sur
$$\left[\frac{1}{3}, \frac{5}{3}\right]$$
.

2. Donnons les intervalles sur lesquels la fonction f semble être convexe:

Au vu du graphique, nous pouvons dire que:

• f' est croissante sur]- ∞ ;-1] U[2;+ ∞ [,

• f 'est décroissante sur [-1; 2]

D'après le cours: f est convexe sur un intervalle I ssi f " $(x) \ge 0$, pour tout $x \in I$.

Or ici, f' est croissante sur] $-\infty$; -1] U [2; $-\infty$ [ce qui revient à dire que:

sur]-
$$\infty$$
;-/] U[2;+ ∞ [, f "(x) ≥ 0 .

Au total, nous pouvons affirmer que: la fonction f est convexe sur l'intervalle] $-\infty$; -1] U [2; $+\infty$ [.

PARTIE B

I. a. Déterminons la limite de la fonction f en $+\infty$:

Ici: •
$$f(x) = (x^2 - 5x + 6) e^x$$
 (UxV)

•
$$\mathfrak{D}f = IR$$
.

En +\infty, la fonction f peut s'écrire: $f(x) = x^2 \times \left[1 - \frac{5}{x} + \frac{6}{x^2}\right] e^x$. $(x \neq 0)$

D'où:
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 \times \left[1 - \frac{5}{x} + \frac{6}{x^2} \right] e^x$$
.

Or d'après le cours: •
$$\lim_{x \to +\infty} x^2 = +\infty$$

•
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

•
$$\lim_{x \to +\infty} \frac{1}{x^2} = 0$$

•
$$\lim_{x \to +\infty} e^x = +\infty$$
.

Dans ces conditions:
$$\lim_{x \to +\infty} f(x) = (+\infty) \times [1-5 \times 0 + 6 \times 0] \times (+\infty) = +\infty$$
.

I. b. Déterminons la limite de la fonction f en $-\infty$:

En
$$-\infty$$
, la fonction f peut s'écrire: $f(x) = x^2 \times \left[1 - \frac{5}{x} + \frac{6}{x^2}\right] e^x$. $(x \neq 0)$

D'où:
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^2 e^x x \left[1 - \frac{5}{x} + \frac{6}{x^2} \right]$$

Or d'après le cours: •
$$\lim_{x \to -\infty} x^2 e^x = 0$$
 (Croissances Comparées)

•
$$\lim_{x \to -\infty} \frac{1}{x} = 0$$

•
$$\lim_{x \to -\infty} \frac{1}{x^2} = 0.$$

Dans ces conditions:
$$\lim_{x \to -\infty} f(x) = 0 \times [1-5 \times 0+6 \times 0] = 0$$
.

2. Montrons que pour tout $x \in \mathbb{R}$, $f'(x) = (x^2 - 3x + 1) e^x$:

La fonction $f(x) = (x^2 - 5x + 6) e^x$ est dérivable sur IR comme produit de deux fonctions dérivables sur IR.

Ainsi, nous pouvons calculer f pour tout $x \in \mathbb{R}$.

Pour tout
$$x \in \mathbb{R}$$
: $f'(x) = (2x-5)e^x + (x^2-5x+6)e^x$

$$(U'xV + UxV')$$

$$= (x^2-3x+1)e^x.$$

Ainsi pour tout $x \in \mathbb{R}$, nous avons bien: $f'(x) = (x^2 - 3x + 1) e^x$.

3. Déduisons-en le sens de variation de la fonction f sur IR:

Sachant que $e^x > 0$, pour tout $x \in IR$, le signe de f' dépend uniquement du signe de $x^2 - 3x + 1$.

Or:
$$x^2 - 3x + I = (x - x_1) \times (x - x_2)$$
,

avec:
$$x_1 = \frac{3 - \sqrt{5}}{2}$$

 $x_2 = \frac{3 + \sqrt{5}}{2}$. $(\Delta = \sqrt{5})$

D'où le tableau de variations de la fonction f sur IR est:

x	-∞	\boldsymbol{x}_{i}		x ₂		+∞
f'	+	0	-	0	+	
f	a	я b <		> c -		≯ d

Avec: $\cdot a = 0$

•
$$b = f(x_i)$$

•
$$c = f(x_2)$$

$$\cdot d = +\infty$$

Ainsi: • f est croissante sur] $-\infty$; x_1] $U[x_2; +\infty[$,

• f est décroissante sur [x_i , x_2].

4. Déterminons l'équation réduite de la tangente à cf au point A (0; f(0)):

L'équation de la tangente à f au point A (0; f (0) s'écrit:

$$y = f'(x_A) \times (x - x_A) + f(x_A)$$

cad:
$$y = f'(0) \times (x - 0) + f(0)$$
.

Or ici:
$$f(x) = (x^2 - 5x + 6) e^x$$
,

•
$$f'(x) = (x^2 - 3x + 1) e^x$$
,

•
$$f(0) = 6$$
,

•
$$f'(0) = 1$$
.

Dans ces conditions: $y = 1 \times (x - 0) + 6$

cad:
$$y = x + 6$$
.

L'équation réduite de la tangente à f au point A(0; f(0)) est donc:

$$y = x + 6$$

5. a. Étudions la convexité de la fonction f sur IR:

Et d'après le cours: • f est concave sur \mathbf{I} ssi f " $(x) \le 0$ pour tout $x \in \mathbf{I}$

• f est convexe sur I ssi f " $(x) \ge 0$ pour tout $x \in I$.

Pour répondre à la question, nous allons étudier le signe de f " sur IR, sachant que $e^x > 0$.

Le signe de f " dépend donc uniquement du signe de (x + 1)(x - 2).

Le tableau de signes de f " sur IR est donc:

x	-∞		-1		2		+∞
x + I		-	0	+		+	
x - 2		-		-	0	+	
$f^{n}(x)$		+	0	-	0	+	

Ainsi: • f est convexe sur $]-\infty$; -/],

- fest concave sur [-1;2],
- f est convexe sur [2; $+\infty$ [.

5. b. Montrons que pour tout $x \in [-1, 2], f(x) \le x + 6$:

Nous savons que sur [-1; 2], la fonction f est concave.

Par conséquent, sa courbe représentative est située au-dessous de toutes ses tangentes et en particulier au-dessous de la tangente ayant pour équation y = x + 6.

Ainsi pour tout $x \in [-1, 2]$, nous pouvons écrire: $f(x) \le x + 6$.