www.freemaths.fr

BACCALAURÉAT MATHÉMATIQUES

ASIE 2022

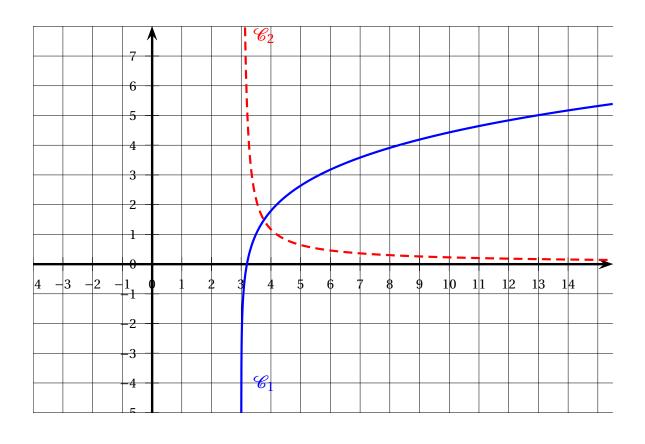
$$f(x) = \ln(x^2 - x - 6)$$

CORRECTION

PARTIE A

1. Associons à chaque courbe la fonction qu'elle représente:

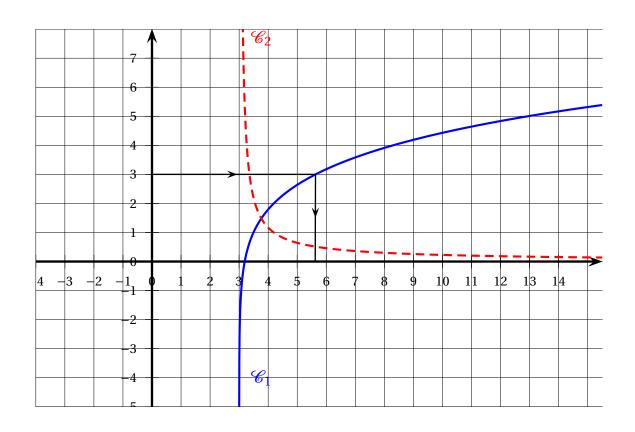
Sur le graphique et sur l'intervalle] $3; +\infty$ [, sont représentées les courbes représentatives de la fonction f et de sa dérivée f'.



- Nous pouvons affirmer que: C, représente la courbe représentative de la fonction f,
 - · C, représente la courbe représentative de la dérivée f' de f.

2. Déterminons graphiquement la solution de l'équation f(x) = 3:

Graphiquement (partie noire avec flèches), l'équation f(x) = 3 admet une seule solution: $x \approx 5, 7$.



Graphiquement, la solution de l'équation f(x) = 3 est: $x \approx 5, 7$.

3. Indiquons, par lecture graphique, la convexité de la fonction f:

D'après le graphique, il est clair que: la courbe le fest concave par rapport à l'origine.

Ainsi: f est concave sur] 3; $+\infty$ [.

freemaths.fr · Mathématiques

PARTIE B

1. Montrons que la fonction f est bien définie sur $I =]3; +\infty$ [:

lci:
$$f(x) = \ln(x^2 - x - 6)$$
 (In (U))

•
$$\mathfrak{D}f=?$$

L'ensemble de définition de f est tel que: $x^2 - x - 6 > 0$.

Soit l'équation: $x^2 - x - 6 = 0$. (ax² + bx + c = 0)

Calcul du discriminant $\Delta = b^2 - 4ac$:

$$\Delta = (-1)^2 - 4(1 \times (-6)) = 2.5 > 0.$$

Les solutions?

Comme $\Delta > 0$, l'équation admet deux solutions distinctes:

•
$$x_1 = \frac{1-5}{2} = -2$$

•
$$x_2 = \frac{1+5}{2} = 3$$
.

Ainsi: $x^2 - x - 6 > 0$ ssi $x \in]-\infty; -2[U]3; +\infty[=Df.$

Dans ces conditions, nous pouvons affirmer que: la fonction f est bien définie sur $I =]3; +\infty$ [.

- 2. a. Calculons les limites de f en $^{\circ}$ 3 $^{\circ}$ et $^{\circ}$ + ∞ $^{\circ}$:
 - al. Limite de la fonction f en 4 3 4:

$$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} \ln(x^{2} - x - 6)$$

$$= \lim_{x \to 0^{+}} \ln(x), \text{ en posant } x = x^{2} - x - 6.$$

Or d'après le cours: •
$$\lim_{X \to 0^+} \ln(X) = -\infty$$
.

Dans ces conditions: $\lim_{x\to 3^+} f(x) = -\infty$.

a2. Limite de la fonction f en $+\infty$:

En +
$$\infty$$
, la fonction f peut s'écrire: $f(x) = \ln\left(x^2 \left[1 - \frac{1}{x} - \frac{6}{x^2}\right]\right)$

$$= \ln\left(x^2\right) + \ln\left[1 - \frac{1}{x} - \frac{6}{x^2}\right] \quad (x \neq 0).$$

D'où:
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \ln(x^2) + \lim_{x \to +\infty} \ln\left[1 - \frac{1}{x} - \frac{6}{x^2}\right]$$

Or d'après le cours: •
$$\lim_{x \to +\infty} \ln(x^2) = \lim_{x \to +\infty} 2 \ln(x) = +\infty$$

• $\lim_{x \to +\infty} -\frac{1}{x} = \lim_{x \to +\infty} -\frac{6}{x^2} = 0$.

Dans ces conditions:
$$\lim_{x \to +\infty} f(x) = +\infty + \ln[1+0+0] = +\infty$$
.

b. Déduisons-en une équation d'une asymptote à la courbe représentative de la fonction f sur \mathbf{I} :

Comme $\lim_{x\to 3^+} f(x) = -\infty$, la courbe représentative de f sur I admet une asymptote verticale d'équation x=3.

3. a. Calculons f'(x) pour tout $x \in I$:

La fonction $f(x) = \ln(x^2 - x - 6)$ est dérivable sur \mathbf{I} comme composée de deux fonctions dérivables sur $\mathbf{I} =]3; +\infty$ [.

Ainsi, nous pouvons calculer f pour tout $x \in]3; +\infty[$.

Pour tout
$$x \in]3; +\infty[: f'(x) = \frac{2x-1}{x^2-x-6} \qquad \left(\frac{u'}{u}\right).$$

La dérivée de la fonction f pour tout $x \in I$ est donc: $f'(x) = \frac{2x-1}{x^2-x-6}$

3. b. b1. Étudions le sens de variation de f sur ${f I}$:

Distinguons deux cas pour tout $x \in I$, sachant que le signe de f dépend uniquement du signe de 2x - 1 car $x^2 - x - 6 > 0$.

Ier cas:
$$f'(x) \leq 0$$
.

$$f'(x) \le 0 \iff 2x - 1 \le 0 \text{ cad } x \le \frac{1}{2}$$

Or nous sommes dans $\mathbf{I} =]3; +\infty$ [.

Donc ce cas est à rejeter.

$$2^e \cos f'(x) \ge 0$$

$$f'(x) \ge 0 \iff 2x - 1 \ge 0 \text{ cad } x \ge \frac{1}{2} \text{ ou } x \in \left[\frac{1}{2}; +\infty\right[$$

Comme $\left[\frac{1}{2}; +\infty\right]$ est inclus dans I: la fonction f est strictement

croissante sur $I =]3; +\infty[$.

3. b. b2. Dressons le tableau de variations de la fonction f sur \mathbf{I} :

Le tableau de variations de la fonction f sur \mathbf{I} est:

x	3 +∞	
f'		+
f		

4. a. Justifions que l'équation f(x) = 3 admet une unique solution α sur] 5; 6 [:

Nous allons appliquer le **corollaire** du théorème des valeurs intermédiaires pour répondre à cette question.

D'après le corollaire du TVI: Soit f une fonction continue et strictement monotone sur I = [a; b] ou I =]a; b[(a < b). Pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet une unique solution dans I.

Ici: • f est continue sur] 3; + ∞ [, donc sur] 5; 6 [

• " k = 3 " est compris entre: $f(5) = \ln (14) < 3$

et: $f(6) = \ln(24) > 3$

• f est strictement croissante sur] 5; 6 [.

Ainsi, d'après le corollaire du TVI, l'équation f(x) = 3 (k = 3) admet bien une unique solution α appartenant à 3; 6 [.

4. b. A l'aide d'une calculatrice, déterminons un encadrement de α :

A l'aide d'une calculatrice, un encadrement de α à 10^{-2} près est:

$$5,63 < \alpha < 5,64$$

5. a. Calculons f''(x) sur $I =]3; +\infty[$:

Ici:
$$f'(x) = \frac{2x-1}{x^2-x-6}$$
 $\left(\frac{u}{v}\right)$

$$I = 13: +\infty \text{ f.}$$

La fonction $f'(x) = \frac{2x-1}{x^2-x-6}$ est dérivable sur \mathbf{I} comme quotient de deux

fonctions dérivables sur \mathbf{I} , avec $x^2 - x - 6 \neq 0$ pour tout $x \in \mathbf{I}$.

Ainsi, nous pouvons calculer f pour tout $x \in \mathbf{I}$.

Pour tout
$$x \in \mathbf{I}$$
: $f''(x) = \frac{(2) \times (x^2 - x - 6) - (2x - 1) \times (2x - 1)}{(x^2 - x - 6)^2}$

$$\left(\frac{U' \times V - U \times V'}{V^2}\right)$$

$$=\frac{2x^2-2x-12-(2x-1)^2}{(x^2-x-6)^2}$$

$$=\frac{2x^2-2x-12-(4x^2+1-4x)}{(x^2-x-6)^2}$$

$$=\frac{-2x^2+2x-13}{(x^2-x-6)^2}.$$

La dérivée seconde de f sur I est:
$$f''(x) = \frac{-2x^2 + 2x - 13}{(x^2 - x - 6)^2}$$

5. b. Étudions la convexité de f sur I:

D'après le cours: • f est concave sur \mathbf{I} ssi f" $(x) \leq 0$ pour tout $x \in \mathbf{I}$

• f est convexe sur \mathbf{I} ssi f " $(x) \ge 0$ pour tout $x \in \mathbf{I}$.

Ici:
$$f''(x) = \frac{-2x^2 + 2x - 13}{(x^2 - x - 6)^2}$$
 pour tout $x \in I$.

Notons que le signe de f " dépend uniquement du signe de $-2x^2 + 2x - 13$ car $(x^2 - x - 6)^2 > 0$ sur I.

Soit l'équation:
$$-2x^2 + 2x - 13 = 0$$
. (ax² + bx + c = 0)

$$\Delta = b^2 - 4ac$$
= 4 - 4 x ((-2) x (-13))
= -100 < 0.

Comme Δ < 0, l'équation n'admet aucune racine dans I.

Dans ces conditions: $-2x^2 + 2x - 13 < 0$ car a = -2 < 0.

Au total, comme $-2x^2 + 2x - 13 < 0$, f''(x) < 0 et par conséquent: la fonction f est strictement concave sur I.