3. Nombres Complexes

3.1 Propriétés des modules

Théorème 17 : Pour tous complexes z et z' non nuls, on a les relations suivantes :

1)
$$|z \, z'| = |z| \times |z'|$$

2)
$$|z^n| = |z|^n$$

$$3) \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$$

Prérequis : On suppose que $z\,\overline{z}=|z|^2$

Démonstration:

1) Pour le produit : on calcule la quantité :

$$|zz'|^2 = zz' \times \overline{zz'} = zz' \times \overline{z}\overline{z'} = z\overline{z} \times z'\overline{z'} = |z|^2 \times |z'|^2$$

Le module d'un nombre complexe est positif, donc : $|z\,z'| = |z| \times |z'|$

2) Pour la seconde, il suffit de faire une récurrence à partir du produit.

3) Pour le qutient, on pose pour $(z'\neq 0)$: $Z=\frac{z}{z'}$ On a alors : $z=Z\,z'$ par la propriété du produit $|z|=|Z|\,|z'|$ d'où $|Z|=\frac{|z|}{|z'|}$

3.2 Propriétés des arguments

Théorème 18: Pour tous complexes z et z' non nuls, on a les relations sui-

1)
$$\arg(z z') = \arg(z) + \arg(z')$$
 $[2\pi]$

2)
$$arg(z^n) = n arg(z)$$
 [2 π]

1)
$$\arg(z z') = \arg(z) + \arg(z')$$
 [2π]
2) $\arg(z^n) = n \arg(z)$ [2π]
3) $\arg\left(\frac{z}{z'}\right) = \arg(z) - \arg(z')$ [2π]

Préreguis: On suppose connu les formules d'addition de cosinus et sinus:

$$cos(a + b) = cos a cos b - sin a sin b$$

$$sin(a + b) = sin a cos b + cos a sin b$$

Démonstration :

1) On pose $z = r(\cos \theta + i \sin \theta)$ et $z' = r'(\cos \theta' + i \sin \theta')$ où r et r' d'une part et θ et θ' d'autre part sont respectivement les modules et arguments des nombres complexes z et z'. On calcule:

> $zz' = rr'(\cos\theta + i\sin\theta)(\cos\theta' + i\sin\theta')$ $= r r' (\cos \theta \cos \theta' + i \cos \theta \sin \theta' + i \sin \theta \cos \theta' - \sin \theta \sin \theta')$

$$= r r' \left[\cos \theta \cos \theta' - \sin \theta \sin \theta' + i (\cos \theta \sin \theta' + \sin \theta \cos \theta') \right]$$

= $r r' \left[\cos(\theta + \theta') + i \sin(\theta + \theta') \right]$

Par identification, on en déduit alors :

$$|zz'| = rr' = |z| |z'|$$
 et $\arg(zz') = \arg(z) + \arg(z')$ $[2\pi]$

- 2) On démontre $|z^n| = |z|^n$ et $\arg(z^n) = n\arg(z)$ par récurrence à partir de la propriété du produit.
- 3) Pour le quotient, on pose $Z = \frac{z}{z'}$, on a donc z = Zz'. Par la propriété du produit, on a:

$$arg(z) = arg(Z) + arg(z')$$
 $[2\pi]$ \Leftrightarrow $arg(Z) = arg(z) - arg(z')$ $[2\pi]$

freemaths.fr