www.freemaths.fr

Technologique Mathématiques

Suites arithmético-géométriques

CORRIGÉ DE L'EXERCICE

Freemaths: Tous droits réservés

L'épidémie

Correction

1. Calculons le nombre de malades prévus par ce modèle lors de la semaine 3 de l'année 2040, avec un coefficient de contagiosité égal à 1,6. On arrondira à l'unité :

On a
$$R_0 = 1$$
, 6 et $n = 3$.

Comme $R_0 > 1$, on remplace dans la première instruction conditionnelle.

D'où
$$u = 300 \times 1, 6^3 + 500 = 1729$$

Il y aura donc 1729 malades lors de la semaine 3.

2. Montrons que le nombre de malades lors de la semaine 6 avec ce même modèle, est le quadruple du nombre de malades lors de la semaine 3 :

On a toujours $R_0 = 1$, 6 mais n = 6.

Comme $R_0 > 1$, on remplace dans la première instruction conditionnelle.

D'où
$$u = 300 \times 1,6^6 + 500 = 5533$$

Freemaths: Tous droits réservés

Il y aura donc 5533 malades lors de la semaine 6.

Or $\frac{5533}{1729} \approx 3$, 2 donc le nombre de malades en 3 semaines a été multiplié par un peu plus de 3.