www.freemaths.fr

Spé Maths Terminale

Équations Différentielles

CORRIGÉ DE L'EXERCICE

RÉSOUDRE y' = ay

3

CORRECTION

D'après le cours, les fonctions solutions de y' = ay ($a \in IR$) sont les fonctions de la forme: $x \to C e^{ax}$, $C \in IR$.

I. Résolvons dans IR l'équation différentielle y - 7y' = 0:

Ici, l'équation différentielle s'écrit: y - 7y' = 0 cad $y' = \frac{7}{7}y$.

Dans ces conditions, $y - 7y^3 = 0$ admet comme solutions les fonctions de la

forme: $h(x) = C \cdot e^{\frac{1}{7}x}$, $C \in \mathbb{R}$.

Ainsi sur IR, les solutions de y - 7y' = 0 sont les fonctions de la forme:

$$h(x) = C \cdot e^{\frac{1}{7}x}, C \in \mathbb{R}.$$

2. Résolvons dans IR l'équation différentielle $5y' + \frac{y}{3} = 0$:

Ici, l'équation différentielle s'écrit: $5y^3 + \frac{y}{3} = 0$ cad $y^3 = \frac{-y}{15}$.

Dans ces conditions, $5y' + \frac{y}{3} = 0$ admet comme solutions les fonctions de la

forme: $h(x) = C \cdot e^{-\frac{1}{15}x}$, $C \in \mathbb{R}$.

Ainsi sur IR, les solutions de 5y' + $\frac{y}{3}$ = 0 sont les fonctions de la forme:

$$h(x) = C \cdot e^{-\frac{1}{15}x}, C \in \mathbb{R}.$$