www.freemaths.fr

Maths Expertes Terminale

Nombres Complexes Forme Trigonométrique

CORRIGÉ DE L'EXERCICE

LE DÉTECTEUR DE FOUDRE!

CORRECTION

La foudre aura-t-elle un ou des impact(s)?

1. Déterminons la seule proposition qui propose un encadrement correct pour r et θ :

D'après le graphique, nous remarquons que:

- r (module de z_p) \in] 20; 40 [,
- θ (argument de z_p) $\in]\frac{\pi}{4}; \frac{\pi}{2}[.$

Par conséquent, la seule proposition correcte est: la proposition C.

- 2. Déterminons le secteur auquel appartient ce point, dans chacun des deux cas suivants:
- 2. a. $z_a = 70 e^{-i\frac{\pi}{3}}$:
 - Le module de z_a est: $r_a = 70$, avec: $70 \in]60$; 80 [,
 - L'argument de z_a est: $\theta_a = -\frac{\pi}{3}$, avec: $-\frac{\pi}{3} \in]-\frac{\pi}{2}; -\frac{\pi}{4}[$.

Or: •] 60; 80 [correspond à la zone 4,

•] - $\frac{\pi}{2}$; - $\frac{\pi}{4}$ [correspond à la portion G.

Dans ces conditions: z_a appartient au secteur G4.

2. b.
$$z_b = -45\sqrt{3} + 45i$$

2. b. b1. Calculons le module et l'argument de z_b:

- Le module de z_b est: $|z_b| = 90 (45^2 \times 3 + 45^2)^{\frac{1}{2}}$.
- Soit θ_b , l'argument de z_b :

$$z_b = 90 (\cos \theta_b + i \sin \theta_b)$$
$$= 90 \left(\frac{\sqrt{3}}{2} + i \cdot \frac{1}{2} \right)$$

Par identification:

$$\begin{cases} \cos \theta_b = \frac{\sqrt{3}}{2} \\ \sin \theta_b = \frac{1}{2} \end{cases} \implies \theta_b = \frac{5\pi}{6} + 2 \text{ kT}, \text{ k } \in \mathbb{Z}.$$

Ainsi, le module et l'argument de z_b sont respectivement:

$$r_b = 90 \text{ et } \theta_b = \frac{5\pi}{6} + 2 \text{ k} \pi, \text{ k} \in \mathbb{Z}.$$

2. b. b2. Détermination du secteur recherché:

- Le module de z_b est: $r_b = 90$, avec: $90 \in]80$; 100 [,
- L'argument de z_b est: $\theta_b = \frac{5\pi}{6}$, avec: $\frac{5\pi}{6} \in \frac{3\pi}{4}$; π [.
- Or: •] 80; 100 [correspond à la zone 5,
 - •] $\frac{3\pi}{4}$; π [correspond à la portion D.

Dans ces conditions: z_h appartient au secteur D5.