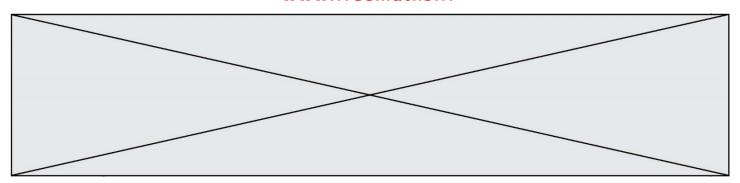
SUJET

2020-2021

SCIENCES DE L'INGÉNIEUR Spécialité Première


ÉVALUATIONS COMMUNES

Modèle CCYC : ©DNE Nom de famille (naissan (Suivi s'il y a lieu, du nom d'u	ice):																	
Prénom((s) :																	
N° candid	at :									N° c	l'ins	crip	tior	ı :				
	(Les	numéros fi	gurent si	ur la con	vocatio	n.)								,		2 5	,	
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e)	le :																	1.1

ÉPREUVES COMMUNES DE CONTRÔLE CONTINU									
CLASSE: Première									
E3C : □ E3C1 ■ E3C2 □ E3C3									
VOIE : ■ Générale □ Technologique □ Toutes voies (LV)									
ENSEIGNEMENT : SCIENCES DE L'INGENIEUR									
DURÉE DE L'ÉPREUVE : 2 heures									
Niveaux visés (LV) : LVA LVB									
Axes de programme :									
CALCULATRICE AUTORISÉE : ■Oui □ Non									
DICTIONNAIRE AUTORISÉ : □Oui □ Non									
■ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.									
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.									
☐ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.									
Nombre total de pages :10									

Page 1 / 10

G1SSCIN03887

BACCALAURÉAT GÉNÉRAL Épreuve Commune de Contrôle Continu E3C

SCIENCES DE L'INGÉNIEUR

Coefficient 5

Durée: 2 heures

Aucun document autorisé

L'usage des calculatrices est autorisé dans les conditions suivantes :

- l'usage de calculatrice avec mode examen actif est autorisé;
- l'usage de calculatrice sans mémoire, « type collège » est autorisé.

Information aux candidats: les candidats qui disposent d'une calculatrice avec mode examen devront l'activer le jour des épreuves et les calculatrices dépourvues de mémoire seront autorisées. Ainsi tous les candidats composeront sans aucun accès à des données personnelles pendant les épreuves.

SUJET SI-E3C-31-4

Constitution du sujet

Rappel du règlement de l'épreuve

Le sujet comporte deux exercices indépendants l'un de l'autre, équilibrés en durée et en difficulté, qui s'appuient sur un produit unique. Un premier exercice s'intéresse à l'étude d'une performance du produit. Les candidats doivent mobiliser leurs compétences et les connaissances associées pour qualifier et/ou quantifier cette performance, à partir de l'analyse, de la modélisation de tout ou partie du produit ou de relevés expérimentaux.

Le second exercice porte sur la commande du fonctionnement du produit ou la modification de son comportement. L'étude s'appuie sur l'algorithmique et de la programmation, à partir de ressources fournies au candidat qu'il devra exploiter, compléter ou modifier.

L'usage de la calculatrice est autorisé dans les conditions précisées par les textes en vigueur.

Modèle CCYC : ©DNE Nom de famille (naissance) (Suivi s'il y a lieu, du nom d'usage														
Prénom(s)														
N° candidat							N° d	'ins	crip	tior	ı : [
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le	eros figurer	nt sur la c	onvocatio	on.)										1.1

PRÉSENTATION DU DISTRIBUTEUR DE SAVON

Dans un souci de santé publique, on veut limiter la transmission des bactéries lors du lavage des mains. Le problème vient du fait qu'avec les distributeurs de savon manuels, le contact des mains favorise la transmission des bactéries.

Le système étudié permet la distribution sans contact d'une dose suffisante de savon liquide pour un usage domestique

Ce distributeur est un nouveau modèle plus compact pour le fabricant. Le cahier des charges spécifie qu'il doit utiliser les mêmes recharges que ceux du modèle précédent.

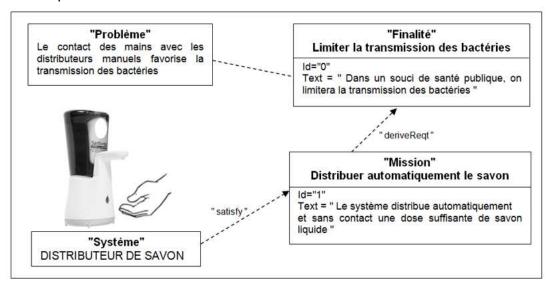
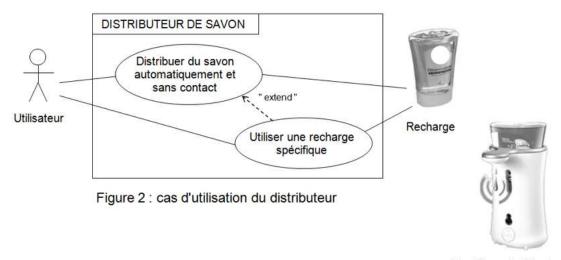
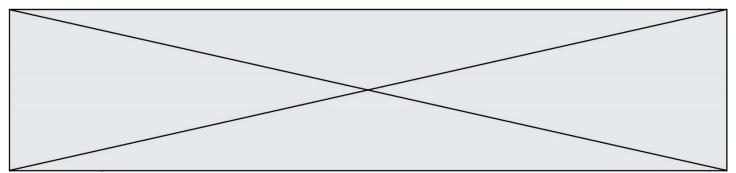
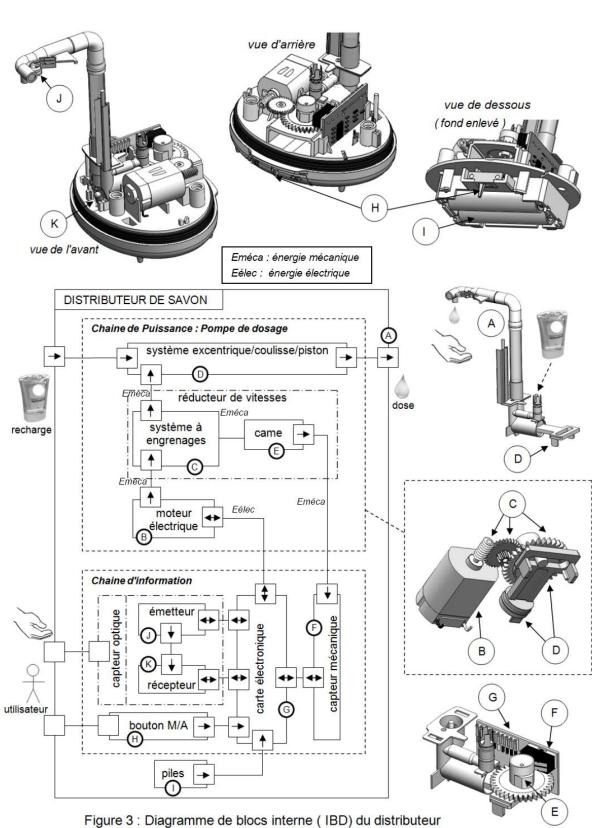
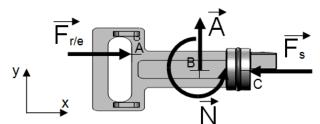





Figure 1: mission du distributeur

Modèle précédent

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																
Prénom(s) :																
N° candidat :									N° c	d'ins	crip	tior	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les numé	ros figure	nt sur la	convoc	ation.)											1.1

Exercice 1 - ÉTUDE D'UNE PERFORMANCE DU PRODUIT


le moteur est-il en capacité de délivrer une dose de savon en 2,5 s?

L'étude sera menée dans un plan (\vec{x}, \vec{y}) figure 1.

Les liaisons sont supposées parfaites, le poids des pièces est négligé.

Pour refouler la dose de savon, le piston doit exercer une force de 20 N.

On isole d'abord le coulisse/piston à l'équilibre, il est soumis à :

- L'action de la dose de savon, une force Fs (20 N)
- L'action de la roue/excentrique, une force Fr/e
- Les actions de guidage de la coulisse :
 - une force A
 - un couple N

figure 1: isolement du coulisse/piston

Question I-1 - Le système coulisse/piston étant en équilibre, **établir** la relation entre les rigure 1 normes de $\overrightarrow{Fr/e}$ et de \overrightarrow{Fs} . En **déduire** la valeur de $\overrightarrow{Fr/e}$.

On isole maintenant la roue/excentrique à l'équilibre, elle est soumise à :

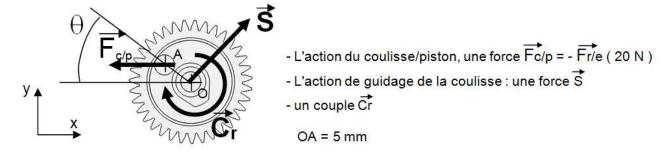


figure 2 : isolement de la roue/excentrique

L'équation du moment du « principe fondamental de la statique » donne la relation :

$$OA \times F_{c/p} \times sin\theta - Cr = 0$$

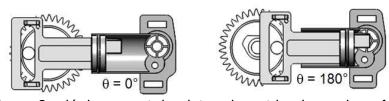
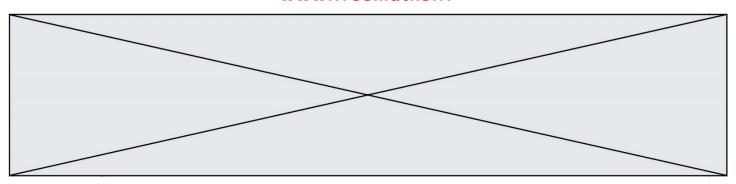
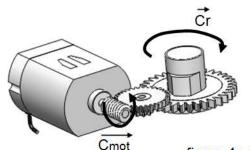




figure 3 : déplacement du piston durant la phase de refoulement

Question I-2 - Calculer les différentes valeur du couple Cr pour les valeurs suivantes de l'angle θ (θ = 0°; 90° et 180°), c'est-à-dire durant la phase de refoulement.

- En déduire la valeur maxi du couple Cr.

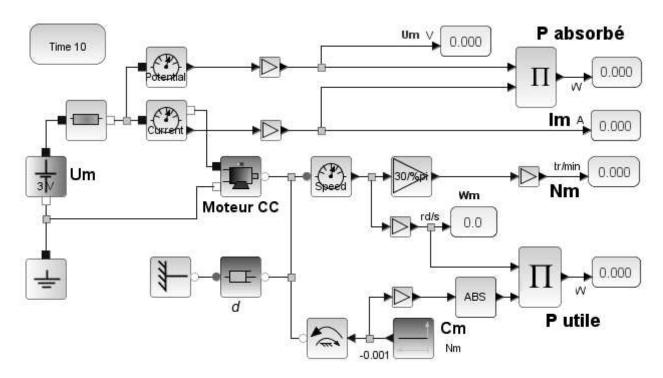
Pour le réducteur à engrenages, on donne l'expression :

$$\eta = \frac{Cr}{C_{mot \times r}}$$

η: rendement du réducteur = 0,81

r : rapport de réduction du réducteur = 198

C_{mot}: couple du moteur


figure 4 : réducteur à engrenages

Question I-3 - Donner l'expression littérale du couple moteur C_{mot} en fonction de Cr, η et r.

Figure 4

- Calculer la valeur maximale du couple moteur C_{mot} (Nmm)

On utilise pour la suite la simulation d'une modélisation multiphysique du moteur électrique du distributeur qui nous permet de déterminer des caractéristiques en fonction du couple moteur C_{mot} .

Modèle CCYC : ©DNE Nom de famille (naissance (Suivi s'il y a lieu, du nom d'usa		
Prénom(s		
N° candida		N° d'inscription :
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE NÉ(e) le	(Les numéros figurent sur la convocation.)	1.1

Paramètres internes du moteur :

tension U= 3V résistance interne R = 4,5 Ω inductance L = 30mH constante de couple k = 0,002817 N.m.A⁻¹ moment d'inertie du rotor J = 0,19.10⁻⁶ kg/m² constante de viscosité d = 11.10⁻⁷ N.m.s/rad

Les résultats de la simulation sont les suivants :

Cm	Pa	Pu	η	lm	Nm
0,00000	0,652	0,000	0,000	0,236	5770,3
0,00015	0,728	0,082	0,113	0,266	5207
0,00030	0,801	0,146	0,182	0,296	4643,7
0,00045	0,873	0,192	0,220	0,327	4080,4
0,00060	0,943	0,221	0,234	0,357	3517,1
0,00075	1,011	0,232	0,229	0,387	2953,8
0,00090	1,078	0,225	0,209	0,417	2390,5
0,00105	1,142	0,201	0,176	0,447	1827,2
0,00120	1,205	0,159	0,132	0,478	1263,9
0,00135	1,266	0,099	0,078	0,508	700,6
0,00150	1,325	0,022	0,017	0,538	137,2
Nm	W	W		Α	tr/min

Caractéristiques déterminées :

Pa : puissance électrique absorbée

Pu : puissance mécanique utile

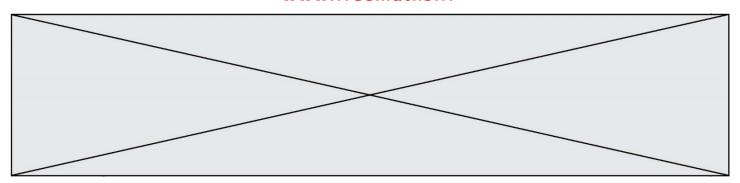
η: rendement du moteur

Im : courant absorbé
Nm : vitesse du moteur

figure 5 : Modélisation multiphysique du moteur électrique

Question I-4 On prendra 0,75 N mm comme valeur de C_m.

- Rechercher dans le tableau figure 5 les valeurs de Pu, η et Nm pour la valeur du couple C_m .
- Conclure quant aux valeurs de la puissance et du rendement.


Le temps du fabricant pour refouler une dose de savon est 2,5 s On choisit une vitesse du moteur de 3 517 tr/min

On choisit une vitesse du moteur de 3 517 tr/min

Question I-5 - **Calculer** la vitesse Nr (tr/min) de la roue/excentrique, sachant que le rapport de réduction **r** est de 198.

Sachant que pour une dose de savon, la roue/excentrique fait 1 tour

- Question I-6 **Déterminer** en fonction de la valeur de Nr trouvée précédemment, la durée (en secondes) pour refouler une dose de savon
 - **Conclure** quant à la valeur annoncée par le fabricant.

Exercice 2 – MODIFICATION DU COMPORTEMENT DU PRODUIT

Dans une démarche d'économie de savon et de protection de l'environnement, le fabriquant souhaite d'une part éviter de distribuer une dose de savon si l'utilisateur a retiré sa main et d'autre part utiliser des batteries rechargeables.

Le fonctionnement du distributeur est décrit par l'algorigramme suivant (figure 7)

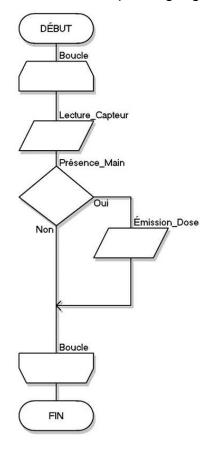


Figure 7 : Algorigramme de fonctionnement du distributeur de savon

Question II-1 **Compléter,** à l'aide de l'algorigramme (figure 7), la description du fonctionnement en notation algorithmique sur le document réponse (DR1).

On souhaite vérifier que l'utilisateur n'a pas retiré sa main avant de distribuer la dose de savon. Pour cela, on introduit un temps d'attente de 2 secondes au bout duquel la dose de savon ne sera émise que si la main de l'utilisateur est toujours présente.

Question II-2 **Compléter** l'algorigramme décrivant ce fonctionnement sur le document réponse (DR1).

Question II-3 **Proposer**, sur votre copie, la description de ce fonctionnement en notation algorithmique.

Modèle CCYC : ©DNE Nom de famille (naissa																			
Prénon	32.00																		
N° candi												N° c	l'ins	crip	tior	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE NÉ(E	e) le :	(Les nu	uméros t	figuren	nt sur l	la con	ocatio	on.)											1.1

Le fabricant désire un nombre minimum de 8000 refoulements de savon et pour des raisons écologiques, il remplace les piles non rechargeables de type alcalines par des micro batteries rechargeables par USB

Le cahier des charges précise :

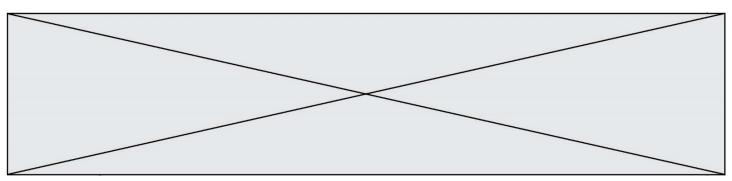
- Le temps de refoulement d'une dose de savon est de 2,5 s
- La tension d'alimentation du moteur est de 3V
- Le couple moteur moyen (Cm) sur un cycle est estimé à 0,68 mN.m
- La constante de couple k = 0,002817 N.m.A⁻¹
- La partie commande consomme environ 25 mA.

Dimensions	L 50mm Ø 14,2mm
Tension	1,5V
Capacité	1500 mAh
type	LITHIUM Li-ion

Figure 8 : Paramètres d'une micro batterie rechargeable par USB

On rappelle que la relation entre le couple et le courant moteur est : Cm = k · Im

Question II-4 Calculer le courant total consommé par le distributeur pour un refoulement de savon


Calculer alors la quantité d'électricité (Qtotal) en mAh

Les piles câblées en série permettent d'alimenter le moteur et la carte électronique.

Question II-5 **Donner** la capacité totale (Qbat) et la tension aux bornes des deux piles (Ubat).

Question II-6 **Calculer** le nombre total de refoulements de savon avant que les 2 piles ne se déchargent.

Conclure sur la faisabilité de remplacer les piles alcalines non rechargeables par des micro batteries rechargeables par USB

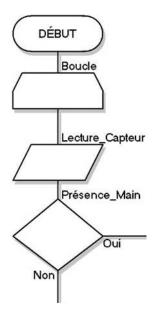
DOCUMENT RÉPONSE

DR1:

Question II-1 Fonctionnement en notation algorithmique

DÉBUT

RÉPÉTER


SI

.....

.....

FIN

Question II-2

