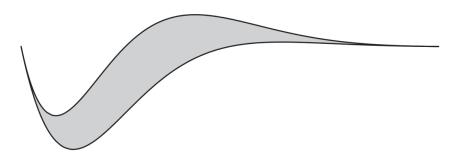
# 1re MATHÉMATIQUES Enseignement de Spécialité


# Études de Fonctions

Énoncé

www.freemaths.fr

### **FONCTION**

Un publicitaire souhaite imprimer le logo ci-dessous sur un T-shirt :



Il dessine ce logo à l'aide des courbes de deux fonctions f et g définies sur  $\mathbf{R}$  par :

$$f(x) = e^{-x}(-\cos x + \sin x + 1)$$
 et  $g(x) = -e^{-x}\cos x$ .

On admet que les fonctions f et g sont dérivables sur  $\mathbf{R}$ .

### Partie A – Étude de la fonction f

1. Justifier que, pour tout  $x \in \mathbf{R}$ :

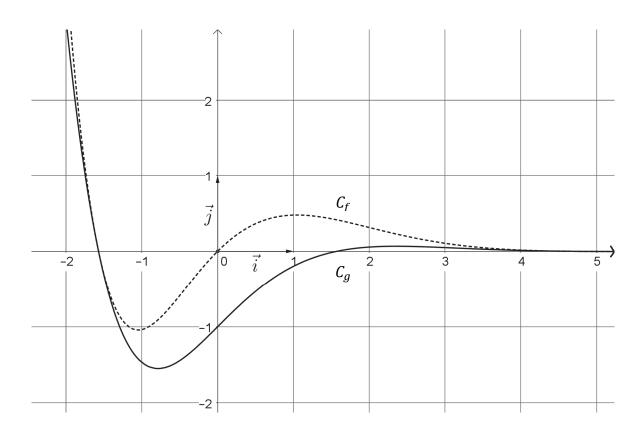
$$-e^{-x} \le f(x) \le 3e^{-x}.$$

- **2.** En déduire la limite de f en  $+\infty$ .
- 3. Démontrer que, pour tout  $x \in \mathbb{R}$ ,  $f'(x) = e^{-x} (2 \cos x 1)$  où f' est la fonction dérivée de f.
- **4.** Dans cette question, on étudie la fonction f sur l'intervalle  $[-\pi; \pi]$ .
  - a. Déterminer le signe de f'(x) pour x appartenant à l'intervalle  $[-\pi; \pi]$ .
  - **b.** En déduire les variations de f sur  $[-\pi; \pi]$ .

### Partie B – Aire du logo

On note  $C_f$  et  $C_g$  les représentations graphiques des fonctions f et g dans un repère orthonormé  $(0; \vec{\iota}, \vec{j})$ . L'unité graphique est de 2 centimètres. Ces deux courbes sont tracées en **ANNEXE**.

- 1. Étudier la position relative de la courbe  $C_f$  par rapport à la courbe  $C_g$  sur  ${\bf R}$ .
- 2. Soit H la fonction définie sur R par :


$$H(x) = \left(-\frac{\cos x}{2} - \frac{\sin x}{2} - 1\right)e^{-x}.$$

On admet que H est une primitive de la fonction  $x \mapsto (\sin x + 1)e^{-x} \sin \mathbf{R}$ .

On note  $\mathcal{D}$  le domaine délimité par la courbe  $C_f$ , la courbe  $C_g$  et les droites d'équation  $x = -\frac{\pi}{2}$  et  $x = \frac{3\pi}{2}$ .

- **a.** Hachurer le domaine  $\mathcal{D}$  sur le graphique en annexe à rendre avec la copie.
- **b.** Calculer, en unité d'aire, l'aire du domaine  $\mathcal{D}$ , puis en donner une valeur approchée à  $10^{-2}$  près en cm<sup>2</sup>.

## ANNEXE

