INTERRO

MATHS

SUJET

PREMIÈRE TECHNOLOGIQUE

www.freemaths.fr

Modèle CCYC : ©DNE Nom de famille (naissance) :																
(Suivi s'il y a lieu, du nom d'usage) Prénom(s):	П			T			Ì									
N° candidat :									N° c	l'ins	crip	tior	ı :			 17
Liberté · Égallité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :		néros fig	urent su	r la con	vocation	n.)										1.1

PARTIE II

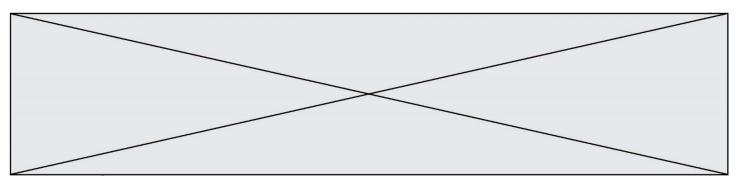
Calculatrice autorisée.

Cette partie est composée de trois exercices indépendants.

Exercice 2 (5 points)

Un maître-nageur dispose de 100 mètres de corde afin de délimiter une zone de baignade surveillée rectangulaire ABCD. Cette zone se situe en bordure d'une plage rectiligne représentée par la droite (AD) comme indiqué sur la figure ci-dessous. La corde est représentée par les traits en pointillés sur le graphique.

Le maître-nageur souhaite obtenir la plus grande surface de baignade possible.


On pose AB = x avec x appartenant à l'intervalle [0; 50].

- **1.** Exprimer BC en fonction de x.
- **2.** Montrer que l'aire de la zone de baignade est modélisée par la fonction S définie sur l'intervalle [0; 50] par

$$S(x) = -2x^2 + 100x$$

- **3.** Résoudre l'équation S(x) = 0.
- **4.** a) Pour quelle valeur de x, la fonction S atteint-elle son maximum ?
 - b) Quelles seront alors les dimensions et l'aire de la zone de baignade ?

www.freemaths.fr

Exercice 3 (5 points)

Dans une usine de production, deux machines m_1 et m_2 fabriquent chaque semaine 1 000 composants électroniques.

La machine m₁ fournit 70% de la production et la machine m₂ en fournit 30%.

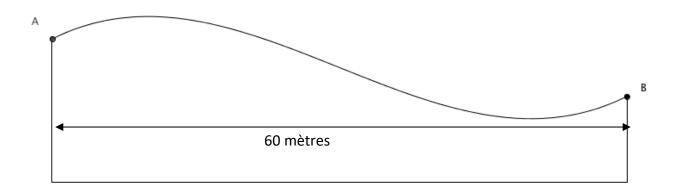
Parmi ces composants, certains sont défectueux.

6% des composants produits par la machine m_1 sont défectueux et 3% des composants produits par la machine m_2 sont défectueux.

1. Recopier et compléter, à l'aide de l'énoncé, le tableau croisé des effectifs ci-dessous.

	Composants produits par la machine m ₁	Composants produits par la machine m ₂	TOTAL
Composants défectueux			
Composants non défectueux			
TOTAL			

On prélève au hasard une pièce dans la production. On note les évènements suivants :


- M₁ « La pièce est produite par la machine m₁ »
- M_2 « La pièce est produite par la machine m_2 »
- D « La pièce prélevée est défectueuse »
- **2.** Déterminer la probabilité de l'évènement M_1 , notée $P(M_1)$.
- **3.** Calculer la probabilité de l'événement $D \cup M_1$, notée $P(D \cup M_1)$.
- **4.** Montrer que la probabilité qu'une pièce soit défectueuse dans cette production est 0,051.
- 5. Calculer la probabilité qu'une pièce soit produite par la machine m₁ sachant qu'elle est défectueuse.

www.freemaths.fr

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° d	d'ins	crip	tion	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les no	uméros	figure	nt sur	la con	vocatio	on.)											1.1

Exercice 4 (5 points)

Pour la construction de son nouveau magasin de sport de glisse d'une profondeur de 60 mètres, une enseigne souhaite une toiture dont l'allure est représentée ci-dessous.

La toiture représentée par la courbe ci-dessus doit répondre à deux contraintes :

- Pour des raisons esthétiques, les pentes aux points A et B doivent être identiques.
- Pour des raisons mécaniques, la différence de hauteur entre le point le plus haut et le point le plus bas de la toiture ne doit pas dépasser 10 mètres.

Après étude, la toiture est représentée par la courbe de la fonction f définie sur l'intervalle [0;60] par :

$$f(x) = \frac{1}{3000}x^3 - 0.03x^2 + 0.5x + 15$$

- **1.** Déterminer f'(x).
- **2.** Montrer que pour tout réel x de l'intervalle [0; 60], on a

$$f'(x) = 0.001(x - 10)(x - 50)$$

- **3.** Les pentes de la toiture en A et en B sont-elles identiques ?
- 4. On souhaite savoir si la contrainte mécanique est respectée.
 - a. Déterminer le signe de f'(x) sur l'intervalle [0;60].
 - b. Dresser le tableau de variations de la fonction f sur l'intervalle [0;60].
 - c. La contrainte mécanique est-elle respectée ?