INTERRO

MATHS

SUJET

PREMIÈRE TECHNOLOGIQUE

www.freemaths.fr

Modèle CCYC : ©DNE Nom de famille (naissance) (Suivi s'il y a lieu, du nom d'usage														
Prénom(s)														
N° candidat							N° d	'ins	crip	tior	ı : [
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le	ros figuren	nt sur la co	onvocation /	on.)										1.1

PARTIE II

Calculatrice autorisée. Cette partie est composée de trois exercices indépendants.

Exercice 2 (5 points)

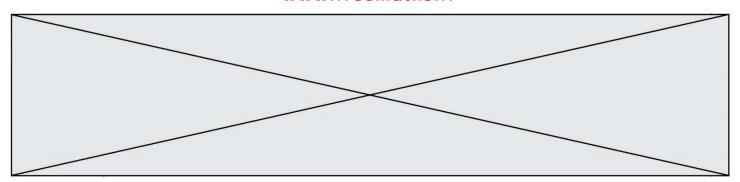
On considère la fonction f définie sur l'intervalle [-3;3] par :

$$f(x) = x^3 - 12x + 1$$

On note f' la fonction dérivée de la fonction f.

- 1) Calculer f'(x) pour tout nombre réel x de l'intervalle [-3;3].
- 2) On admet que pour tout nombre réel x de l'intervalle [-3;3] on a :

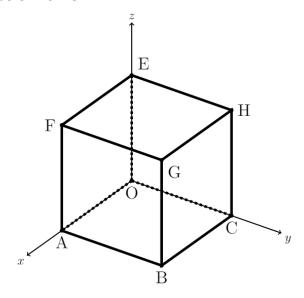
$$f'(x) = 3(x-2)(x+2)$$


Étudier le signe de f'(x) sur l'intervalle [-3;3].

- 3) En déduire le tableau de variations de la fonction f sur l'intervalle [-3;3].
- 4) On note C la courbe représentative de la fonction f sur l'intervalle [-3;3].

Soit Δ la tangente à la courbe C au point d'abscisse 0.

- a) Donner l'équation réduite de la droite Δ .
- b) Résoudre sur l'intervalle [-3;3] l'équation f(x) = -12x + 1 et interpréter graphiquement le résultat.


www.freemaths.fr

Exercice 3 (5 points)

On munit l'espace d'un repère orthonormal d'origine O. On considère les points :

On construit alors le cube OABCEFGH:

- 1) Donner les coordonnées du point G.
- 2) Calculer la distance EB.
- 3) On considère la section plane du cube OABCEFGH par le plan (**FAC**). Donner, parmi les huit sommets du cube, tous ceux qui appartiennent à cette section plane.
- 4) Quelle est la projection du point E sur le plan (ABC) parallèlement à la droite (FB)?
- 5) Soit le point M, centre du cube OABCEFGH.
 On rappelle que ce point est le milieu du segment [AH].
 On note M' le point obtenu par projection du point M sur le plan (ABC) parallèlement à la droite (FA).
 Donner une caractérisation géométrique du point M'.

www.freemaths.fr

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	otion	n :			
Liberté : Égalité : Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)		_	.								1.1

Exercice 4 (5 points)

Dans une ville, pour se rendre à l'aéroport en utilisant les transports en commun, deux moyens différents sont proposés aux usagers : le bus (B) ou le tramway (T).

Trois personnes choisissent chacune au hasard et de façon indépendante un moyen pour se rendre à l'aéroport en utilisant les transports en commun.

On suppose que la probabilité de prendre le bus, pour chaque personne, est égale à 0,4 et celle de prendre le tramway à 0,6.

- 1) Représenter la situation par un arbre de probabilités.
- 2) Calculer la probabilité que les trois personnes prennent chacune le bus.
- 3) On note X la variable aléatoire associée au nombre de personnes qui prennent le bus.

On donne ci-dessous la loi de probabilité de la variable aléatoire *X* :

а	0	1	2	3
p(X=a)	0,216	0,432	0,288	0,064

- a) Interpréter dans le cadre de l'exercice l'évènement $(X \le 2)$. Aucun calcul de probabilité n'est demandé dans cette question.
- b) Calculer la probabilité $p(X \le 2)$.
- c) Calculer l'espérance de la variable aléatoire X.

Page 5 / 5

T1CMATH03546