www.freemaths.fr

Technologique Mathématiques (STI2D)

Nombres Complexes Forme Algébrique

CORRIGÉ DE L'EXERCICE

RÉEL OU IMAGINAIRE PUR ?

9

CORRECTION

1. Déterminons la forme algébrique de Z:

Ici:
$$\mathbf{Z} = (\mathbf{z} + l + i)^2$$
, avec $\mathbf{z} = x + iy$.

Dans ces conditions: $\mathbf{Z} = (\mathbf{z} + l + i) \times (\mathbf{z} + l + i)$

$$= \mathbf{z}^2 + \mathbf{z} + i\mathbf{z} + \mathbf{z} + l + i + i\mathbf{z} + i - l$$

$$= \mathbf{z}^2 + 2\mathbf{z} + 2i\mathbf{z} + 2i$$

$$= (x + iy)^2 + 2 \times (x + iy) + 2i \times (x + iy) + 2i$$

$$= (x^2 - y^2 + 2x - 2y) + i(2xy + 2x + 2y + 2).$$

Ainsi, sous forme algébrique Z s'écrit:

$$Z = (x^2 - y^2 + 2x - 2y) + i(2xy + 2x + 2y + 2)$$

2. Déduisons-en les nombres complexes z tels que Z soit un imaginaire pur:

Z est un imaginaire pur ssi: $x^2 - y^2 + 2x - 2y = 0$.

Or:
$$x^2 - y^2 + 2x - 2y = 0 \iff (x - y)(x + y + 2) = 0$$

$$\begin{cases} x - y = 0 \\ ou \\ x + y + 2 = 0 \end{cases}$$

Ainsi, les nombres complexes z tels que Z soit un imaginaire pur sont de la forme: $\cdot z = y + iy$ (quand x = y)

ou

•
$$z = (-y - 2) + iy$$
 (quand $x = -y - 2$).

3. Pour z = -2i, Z est-il un réel ?

Si
$$z = -2i$$
: $Z = (-2i + l + i)^2$
= $(l - i)^2$
= $-2i \not\in IR$.

Donc si z = -2i: Z n'est pas un nombre réel!