www.freemaths.fr

1re Technologique Mathématiques

Dérivées de Fonctions

CORRIGÉ DE L'EXERCICE

CALCUL DE DÉRIVÉES

2

CORRECTION

D'après le cours, nous savons que:

• $f(x) = a \cdot x^n + b$ est dérivable sur R et: $f'(x) = a \cdot n \cdot x^{(n-1)}$. $(n \in \mathbb{N}^*)$

$$\cdot \left(\frac{1}{V}\right)' = -\frac{V'}{V^2}, \text{ avec: } V \neq 0 \text{ sur } \mathfrak{D}_f.$$

- 1. Calculons la dérivée de la fonction $f(x) = \frac{1}{3x}$
 - Le domaine de définition de f?

If faut que: $3x \neq 0$ cad $x \neq 0$.

D'où: $\mathfrak{D}_f = IR - \{0\}$

• Le domaine de dérivabilité de f?

If faut que: $3x \neq 0$ cad $x \neq 0$.

D'où: $\mathfrak{D}_{f'} = \mathbb{R} - \{0\}$.

• Pour tout $x \in \mathbb{R}$: $f'(x) = \frac{-3}{(3x)^2} = \frac{-1}{3x^2}$

2. Calculons la dérivée de la fonction $f(x) = \frac{3}{4x+2}$

• Le domaine de définition de f?

If faut que:
$$4x + 2 \neq 0$$
 cad $x \neq -\frac{1}{2}$.

D'où:
$$\mathfrak{D}_f = IR - \{-\frac{1}{2}\}.$$

• Le domaine de dérivabilité de f?

If faut que:
$$4x + 2 \neq 0$$
 cad $x \neq -\frac{1}{2}$.

D'où:
$$D_{f'} = IR - \{-\frac{1}{2}\}.$$

• Pour tout
$$x \in \mathbb{R}$$
: $f'(x) = \frac{-3 \times 4}{(4x+2)^2} = \frac{-12}{(4x+2)^2}$

- 3. Calculons la dérivée de la fonction $f(x) = \frac{-7}{2x^6 + 4}$
 - Le domaine de définition de f?

Il faut que: $2x^6 + 4 \neq 0$, ce qui est toujours vérifié pour tout $x \in \mathbb{R}$.

D'où:
$$\mathfrak{D}_f = IR$$
.

• Le domaine de dérivabilité de f?

Il faut que: $2x^6 + 4 \neq 0$, ce qui est toujours vérifié pour tout $x \in \mathbb{R}$.

D'où:
$$\mathfrak{D}_{f'} = IR$$
.

• Pour tout
$$x \in \mathbb{R}$$
: $f'(x) = \frac{7 \times (12 \times x^5)}{(2 \times x^6 + 4)^2} = \frac{84 \times x^5}{(2 \times x^6 + 4)^2}$

4. Calculons la dérivée de la fonction
$$f(x) = \frac{6}{x^4 + 2I}$$

• Le domaine de définition de f?

Il faut que: $x^4 + 2I \neq 0$, ce qui est toujours vérifié pour tout $x \in \mathbb{R}$.

D'où:
$$\mathfrak{D}_f = IR$$
.

• Le domaine de dérivabilité de f?

Il faut que: $x^4 + 2I \neq 0$, ce qui est toujours vérifié pour tout $x \in \mathbb{R}$.

D'où:
$$\mathfrak{D}_{f'} = IR$$
.

• Pour tout
$$x \in \mathbb{R}$$
: $f'(x) = \frac{-6 \times (4x^3)}{(x^4 + 2I)^2} = \frac{-24x^3}{(x^4 + 2I)^2}$

5. Calculons la dérivée de la fonction
$$f(x) = \frac{-1}{15x-5}$$

• Le domaine de définition de f?

If faut que: $15x - 5 \neq 0$ cad $x \neq \frac{1}{3}$.

D'où:
$$\mathfrak{D}_f = IR - \{\frac{1}{3}\}.$$

• Le domaine de dérivabilité de f?

If faut que: $15x-5\neq 0$ cad $x\neq \frac{1}{3}$.

D'où:
$$\mathfrak{D}_{f'} = IR - \{\frac{1}{3}\}.$$

• Pour tout
$$x \in \mathbb{R}$$
: $f'(x) = \frac{1 \times 15}{(15x-5)^2} = \frac{15}{(15x-5)^2}$

6. Calculons la dérivée de la fonction $f(x) = \frac{13}{7 - 2x}$

• Le domaine de définition de f?

If faut que: $7-2x \neq 0$ cad $x \neq \frac{7}{2}$.

D'où:
$$\mathfrak{D}_{f} = IR - \{\frac{7}{2}\}.$$

• Le domaine de dérivabilité de f?

If faut que: $7-2x \neq 0$ cad $x \neq \frac{7}{2}$.

D'où: $\mathfrak{D} f' = IR - \{\frac{7}{2}\}.$ • Pour tout $x \in IR$: $f'(x) = \frac{-13 \times (-2)}{(7 - 2x)^2} = \frac{26}{(7 - 2x)^2}$