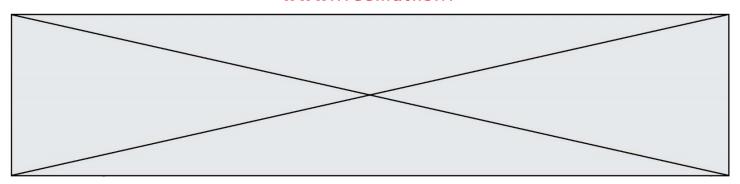
# SUJET

2019-2020


## PHYSIQUE-CHIMIE POUR LA SANTÉ SPÉ première ST2S

ÉVALUATIONS COMMUNES

| Modèle CCYC : ©DNE Nom de famille (naissance) (Suivi s'il y a lieu, du nom d'usage |              |             |           |      |  |   |  |      |      |      |      |       |  |  |     |
|------------------------------------------------------------------------------------|--------------|-------------|-----------|------|--|---|--|------|------|------|------|-------|--|--|-----|
| Prénom(s)                                                                          |              |             |           |      |  |   |  |      |      |      |      |       |  |  |     |
| N° candidat                                                                        |              |             |           |      |  |   |  | N° d | 'ins | crip | tion | ı : [ |  |  |     |
| Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE  Né(e) le                      | eros figurer | nt sur la c | onvocatio | on.) |  | ] |  |      |      |      |      |       |  |  | 1.1 |

| ÉVALUATION COMMUNE                                                                                              |
|-----------------------------------------------------------------------------------------------------------------|
|                                                                                                                 |
| CLASSE: Première ST2S                                                                                           |
| EC: □ EC1 ⊠ EC2 □ EC3                                                                                           |
| VOIE : □ Générale ⊠ Technologique □ Toutes voies (LV)                                                           |
| ENSEIGNEMENT : Physique-chimie pour la santé                                                                    |
| DURÉE DE L'ÉPREUVE : 2h                                                                                         |
| Niveaux visés (LV) : LVA LVB                                                                                    |
| Axes de programme :                                                                                             |
| CALCULATRICE AUTORISÉE : ⊠Oui □ Non                                                                             |
| DICTIONNAIRE AUTORISÉ: □Oui ⊠ Non                                                                               |
|                                                                                                                 |
| $\square$ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être     |
| dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.                |
| $\square$ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est            |
| nécessaire que chaque élève dispose d'une impression en couleur.                                                |
| $\square$ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour |
| de l'épreuve.                                                                                                   |
| Nombre total de pages : 10                                                                                      |

Page 1 / 10



#### Exercice 1 : Perte de poids pour un étudiant (5 points)

Un matin d'été, un étudiant décide d'aller faire un jogging. Il aimerait bien perdre un peu de « poids » avant de partir en vacances avec ses amis.

| Document 1 : Caractéristiques physique | s de l'étudiant |
|----------------------------------------|-----------------|
| Âge (années)                           | 24              |
| Masse (kg)                             | 75              |
| Taille (m)                             | 1,78            |
| Température du corps (°C)              | 37              |

| Document 2 : Modèle donnant le métabolisme de base en kilocalories d'un être                                                       |
|------------------------------------------------------------------------------------------------------------------------------------|
| humain                                                                                                                             |
| Équation de Harris et Benedict :                                                                                                   |
| $\dot{MB}(Homme) = 13.7 \times Masse \text{ (kg)} + 4.9 \times Taille \text{ (cm)} - 6.7 \times \hat{A}ge \text{ (années)} + 77.6$ |

| Document 3 : Besoi | ns énergétiques quotidiens de l'étud | liant selon son activité |
|--------------------|--------------------------------------|--------------------------|
| Profil             | Signification                        | Besoins énergétiques     |
| étudiant           |                                      | réels                    |
| Sédentaire         | Aucun exercice quotidien ou          | <i>MB</i> × 1,2          |
|                    | presque                              |                          |
| Légèrement actif   | Exercices physiques (1 à 3 fois      | <i>MB</i> × 1,375        |
|                    | par semaine)                         |                          |
| Actif              | Exercices physiques réguliers (3     | <i>MB</i> × 1,55         |
|                    | à 5 fois par semaine)                |                          |
| Très actif         | Sport quotidien ou exercices         | <i>MB</i> × 1,725        |
|                    | physiques soutenus                   |                          |
| Extrêmement actif  | Sportif de haut niveau               | <i>MB</i> × 1,9          |

Cet étudiant souhaite comprendre quels peuvent être les différents facteurs qui interagissent pour déterminer la perte de poids.

**1.** Calculer le métabolisme de base *MB* (exprimé en kilocalories) de l'étudiant en utilisant les **documents 1 et 2**.

Ce métabolisme de base correspond à l'énergie minimale dont l'étudiant a besoin pour survivre au repos.

**2.** Sachant que l'étudiant a fait du sport deux fois par semaine durant cette année universitaire, calculer ses besoins énergétiques journaliers réels en utilisant les données du **document 3**.

| Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage) |         |        |        |         |          |        |      |  |  |  |      |       |      |      |     |  |  |     |
|-------------------------------------------------------------------------------------|---------|--------|--------|---------|----------|--------|------|--|--|--|------|-------|------|------|-----|--|--|-----|
| Prénom(s) :                                                                         |         |        |        |         |          |        |      |  |  |  |      |       |      |      |     |  |  |     |
| N° candidat :                                                                       |         |        |        |         |          |        |      |  |  |  | N° c | d'ins | crip | tior | ı : |  |  |     |
| Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE  Né(e) le :                     | (Les ni | uméros | figure | ent sur | r la con | vocati | on.) |  |  |  |      |       |      |      |     |  |  | 1.1 |

Cet étudiant consomme par semaine en nourriture l'équivalent énergétique de 19635 kcal.

- **3.** Expliquer pourquoi l'étudiant ne peut pas perdre du « poids » en courant deux fois par semaine.
- **4.** Donner un conseil argumenté à cet étudiant sur sa pratique sportive pour qu'il arrive à perdre du « poids » sans modifier son alimentation.

Dans l'après-midi, l'un de ses amis invite cet étudiant à la piscine. La température de l'eau de la piscine est égale à 23°C et la température de l'air atteint la valeur de 30°C. L'étudiant, un peu frileux, rencontre quelques difficultés à rentrer dans la piscine car il trouve que l'eau est plutôt froide.

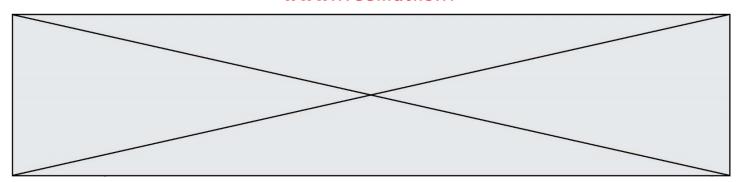
**5.** Expliquer pourquoi l'étudiant ressent cette sensation.

Dans la piscine, cet échange de chaleur, au niveau de l'organisme de l'étudiant, se fait principalement selon deux modes de transferts thermiques.

- **6.** Quels sont les mécanismes à l'origine des pertes thermiques de l'organisme de l'étudiant ? Choisir les bonnes réponses parmi la liste suivante :
- Convection
- Conduction
- Evaporation
- Ravonnement
- 7. Nommer et décrire brièvement le mode de transfert thermique qui permet au soleil de chauffer l'eau de la piscine ?

En fin d'après-midi, Eddie et son ami se désaltèrent avec une boisson contenant des glaçons. Ils constatent que les glaçons fondent très vite.

**8.** Indiquer, en justifiant la réponse, si la fonte des glaçons consomme ou fournit de l'énergie.


#### Exercice 2 : Étude de la composition du lait (5 points)

Le lait fait partie intégrante d'une alimentation équilibrée. Il contient notamment des glucides, des lipides et des protéines. Les glucides du lait font l'objet des questions 1 à 5, les lipides du lait sont étudiés dans les questions 6 et 7 et les protéines du lait dans les questions 8 et 9.

#### Données nécessaires à la résolution de l'exercice :

• Formule semi-développée du glucose :

Page 3 / 10



- Formule d'un acide gras saturé : C<sub>n</sub>H<sub>2n+1</sub> COOH
- Formule de l'acide myristique : C<sub>13</sub>H<sub>27</sub> COOH
- Quelques acides aminés :

| Acide glutamique | HOOC-CH <sub>2</sub> -CH <sub>2</sub> -CH-COOH                              |
|------------------|-----------------------------------------------------------------------------|
|                  | I<br>NH <sub>2</sub>                                                        |
| Molécule a       | HO — C <sub>6</sub> H <sub>4</sub> — CH <sub>2</sub> — CH — NH <sub>2</sub> |
|                  |                                                                             |
|                  | COOH                                                                        |
| Molécule b       | HOOC — C <sub>6</sub> H <sub>4</sub> — CH <sub>2</sub> — CH — OH            |
|                  |                                                                             |
|                  | NH <sub>2</sub>                                                             |
| Molécule c       | H <sub>2</sub> N—C <sub>6</sub> H <sub>4</sub> —CH <sub>2</sub> —CH—COOH    |
|                  |                                                                             |
|                  | ОН                                                                          |

Masses molaires atomiques (en g.mol<sup>-1</sup>):
 M(H)=1,0; M(C)=12,0; M(O)=16,0

Le lactose est le sucre du lait, l'hydrolyse enzymatique du lactose en glucose et en galactose est modélisée par la réaction chimique dont l'équation est :

- **1.** Nommer la molécule A présente dans l'équation de la réaction modélisant l'hydrolyse enzymatique du lactose.
- **2.** Après avoir recopié la formule de la molécule de glucose sur la copie, entourer et nommer les fonctions présentes.

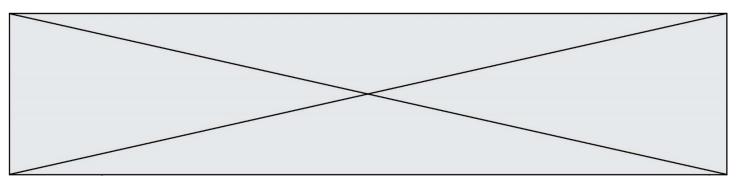
|                                                                                     |         |          |          |           |          |     |  |  |      |       |      |     |     |  | <br> |     |
|-------------------------------------------------------------------------------------|---------|----------|----------|-----------|----------|-----|--|--|------|-------|------|-----|-----|--|------|-----|
| Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage) |         |          |          |           |          |     |  |  |      |       |      |     |     |  |      |     |
| Prénom(s) :                                                                         |         |          |          |           |          |     |  |  |      |       |      |     |     |  |      |     |
| N° candidat :                                                                       |         |          |          |           |          |     |  |  | N° d | 'insc | ript | ion | : [ |  |      |     |
| Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE  Né(e) le :                     | (Les nu | méros fi | gurent s | ur la con | vocation | 1.) |  |  |      |       |      |     |     |  |      | 1.1 |

- 3. Le glucose et le galactose sont deux isomères. Donner la formule brute du galactose.
- **4.** Calculer la masse molaire *M* du glucose.
- **5.** Sachant qu'un litre de lait contient environ 24 g de glucose, calculer la quantité de matière *n* en mole de glucose dans un litre de lait.

Le lait et ses nombreux dérivés renferment près de 60 % à 65 % d'acides gras saturés dont les acides myristique, palmitique, stéarique, etc.

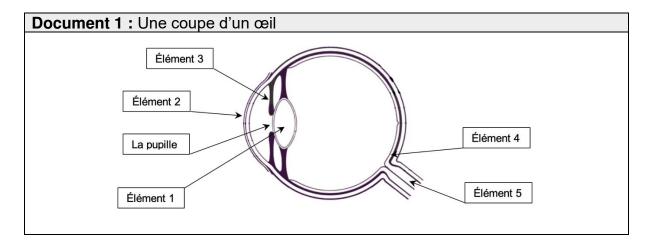
- 6. Donner la définition d'un acide gras.
- 7. Montrer que l'acide myristique est un acide gras saturé.

Le lait contient deux types de protéines : le lactosérum et la caséine. Pour l'organisme, la caséine est une source d'acides  $\alpha$ -aminés, notamment la tyrosine et l'acide glutamique.


8. Justifier que l'acide glutamique-est un acide α-aminé.

Les deux acides  $\alpha$ -aminés, la tyrosine et l'acide glutamique, réagissent ensemble lors d'une réaction de condensation. L'équation qui modélise la réaction de condensation de des deux acides  $\alpha$  aminés d'écrit comme suit :

Le dipeptide formé a pour formule semi-développée :


9. Déterminer la formule semi-développée de la tyrosine parmi les molécules a, b et c figurant dans les données.

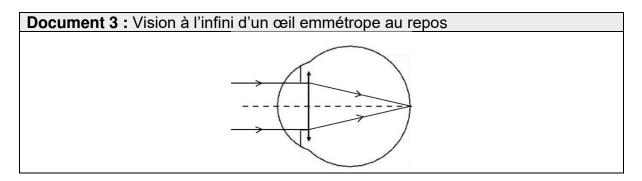
Page 5 / 10



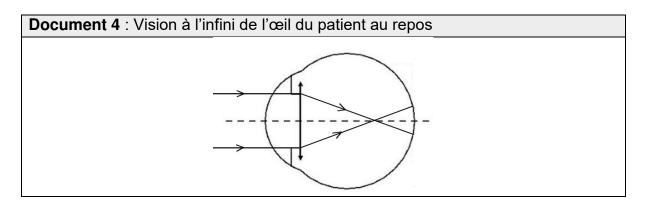
#### **Exercice 3 : Une consultation ophtalmologique** (5 points)

L'ophtalmologie est la branche de la médecine chargée, entre autres, du traitement des maladies de l'œil, l'un des organes les plus complexes et perfectionnés de notre corps.




#### **Document 2:** Les lentilles minces

Il existe deux catégories de lentilles minces : les lentilles convergentes et divergentes. Le simple fait d'observer l'action sur des rayons lumineux permet de les différencier. Celles qui transforment un faisceau de rayons parallèles en un faisceau de rayons convergents sont les lentilles convergentes. Les lentilles divergentes transformeront un faisceau de rayons parallèles en un faisceau de rayons divergents.


Chaque lentille est caractérisée par sa vergence, V, qui correspond à l'inverse de sa distance focale, f'. Ainsi, la relation liant ces deux grandeurs est :

$$V = \frac{1}{f}$$

avec la vergence V exprimée en dioptries ( $\delta$ ) et la distance focale f 'en mètres (m).



| Modèle CCYC : ©DNE Nom de famille (naissa                 |         |         |          |         |          |        |        |      |  |  |  |      |       |      |      |     |  |  |     |
|-----------------------------------------------------------|---------|---------|----------|---------|----------|--------|--------|------|--|--|--|------|-------|------|------|-----|--|--|-----|
| Prénon                                                    |         |         |          |         |          |        |        |      |  |  |  |      |       |      |      |     |  |  |     |
| N° candi                                                  |         |         |          |         |          |        |        |      |  |  |  | N° c | l'ins | crip | tior | ı : |  |  |     |
| Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE  NÉ(E | e) le : | (Les nu | uméros t | figuren | nt sur l | la con | ocatio | on.) |  |  |  |      |       |      |      |     |  |  | 1.1 |

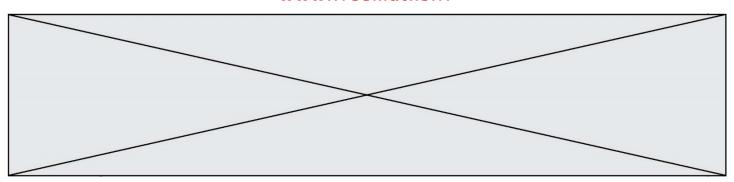


**1.** Faire correspondre à chaque élément numéroté de 1 à 5, du **document 1**, le terme correct parmi la liste suivante :

| la rétine l'iris le cristallin la cornée le nerf optique |
|----------------------------------------------------------|
|----------------------------------------------------------|

2. Associer à chaque élément de l'œil, cité précédemment, son rôle parmi les suivants :

| Endroit  | Fait       | Transmet les | Paroi               | Partie colorée qui  |
|----------|------------|--------------|---------------------|---------------------|
| où       | converger  | informations | transparente qui    | permet de régler la |
| l'image  | les rayons | de l'œil au  | se trouve à l'avant | quantité de lumière |
| se forme | lumineux   | cerveau      | de l'œil et le      | entrant dans l'œil  |
|          |            |              | protège             |                     |


3. Décrire comment varie le diamètre de la pupille lorsque la luminosité augmente.

On appelle œil emmétrope, un œil « normal », ne nécessitant aucune correction. Pour simplifier sa représentation, on peut modéliser l'ensemble des milieux transparents de l'œil par une unique lentille équivalente convergente. Pour un œil emmétrope au repos, les rayons issus d'un objet à l'infini sont déviés et forment l'image sur la rétine, la distance focale f de la lentille équivalente est, alors, égale à  $1,67 \times 10^{-2}$  m.

**4.** À l'appui des **documents 2 et 3**, calculer la vergence, notée  $V_E$ , d'un œil emmétrope au repos.

Un patient qui a des difficultés à voir les objets lointains se rend chez son ophtalmologiste. L'examen du patient révèle que, pour une vision à l'infini, son œil

Page 7 / 10



droit a une vergence  $V_P$  égale à 62,0  $\delta$ . Le **document 4** schématise la progression des rayons lumineux issus d'un objet à l'infini pour cet œil au repos.

**5.** Écrire les phrases suivantes en choisissant le mot qui convient parmi les propositions en italique.

L'œil droit de ce patient est trop *divergent/convergent*. Ce patient souffre *de myopie/d'hypermétropie* pour cet œil.

**6.** Indiquer quel type de lentille (convergente ou divergente), l'ophtalmologiste devra prescrire au patient pour améliorer sa vision.

On note :  $V_E$  la vergence d'un œil emmétrope,

 $V_C$  la vergence de la lentille correctrice,

 $V_P$  la vergence de l'œil du patient.

- **7.** Donner la relation liant  $V_E$ ,  $V_C$  et  $V_P$ .
- **8.** Calculer la vergence de la lentille correctrice  $V_C$  prescrite par l'ophtalmologiste pour l'œil droit du patient.

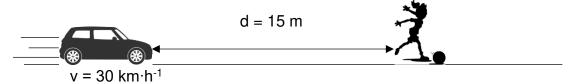
### Exercice 4 : Signalisation en agglomération pour la sécurité des enfants (5 points)

En agglomération, plusieurs panneaux de signalisation font référence à la vitesse du véhicule.

A l'entrée d'une petite agglomération, on trouve le panneau 1, indiquant la vitesse maximale autorisée, en km·h<sup>-1</sup> :

Panneau 1

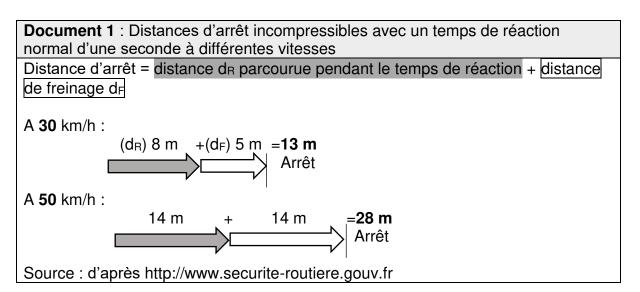
Dans le centre du village, aux abords d'un groupe scolaire, on trouve également le panneau 2 :


ZONE

Panneau 2

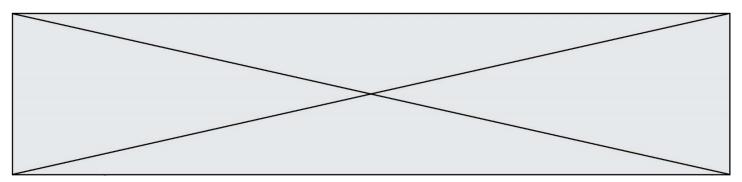
| Modèle CCYC : ©DNE Nom de famille (naissance) (Suivi s'il y a lieu, du nom d'usage |        |        |        |        |         |      |  |  |  |      |       |      |      |     |  |  |     |
|------------------------------------------------------------------------------------|--------|--------|--------|--------|---------|------|--|--|--|------|-------|------|------|-----|--|--|-----|
| Prénom(s)                                                                          |        |        |        |        |         |      |  |  |  |      |       |      |      |     |  |  |     |
| N° candidat                                                                        |        |        |        |        |         |      |  |  |  | N° c | l'ins | crip | tior | ı : |  |  |     |
| Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE  Né(e) le                      | uméros | figure | nt sur | la con | vocatio | on.) |  |  |  |      |       |      |      |     |  |  | 1.1 |

Un automobiliste traverse ce village à la vitesse de 50 km·h<sup>-1</sup> et réduit sa vitesse à 30 km·h<sup>-1</sup> à l'approche de l'école primaire, lorsqu'il aperçoit le panneau 2.


Soudain, une fillette bondit brusquement sur la route, devant la voiture, pour récupérer son ballon, comme l'indique le schéma ci-dessous :



La voiture pourra-t-elle s'arrêter avant de percuter l'enfant ?


#### Données:

 $50 \text{ km} \cdot \text{h}^{-1} = 14 \text{ m} \cdot \text{s}^{-1}$ 



- 1. A partir du **document** 1, nommer et définir les deux distances qui composent la distance d'arrêt.
- **2.** Distance d<sub>R</sub> parcourue pendant le temps de réaction
- **2.1.** Convertir la vitesse indiquée sur le panneau 2 dans l'unité du système international.
- **2.2.** Exprimer la distance  $d_R$ , parcourue par la voiture, en fonction de la vitesse v de la voiture et du temps de réaction  $\Delta t$ . Préciser l'unité de chaque grandeur dans le système international d'unités.
- **2.3.** Vérifier par le calcul que cette distance d<sub>R</sub> correspond à celle donnée dans le document 1, si l'on considère que le conducteur a un temps de réaction normal d'1 s.
- **2.4.** Citer un facteur qui pourrait augmenter le temps de réaction de l'automobiliste.
- 3. Citer un facteur qui pourrait augmenter la distance de freinage d<sub>F</sub>.

Page 9 / 10



#### 4. Distance d'arrêt du véhicule

- **4.1.** D'après le **document 1**, le conducteur pourra-t-il arrêter sa voiture assez tôt pour ne pas percuter l'enfant à la vitesse de 30 km·h<sup>-1</sup> ? Justifier la réponse.
- **4.2.** La réponse serait-elle la même si le conducteur n'avait pas réduit sa vitesse et roulait à 50 km·h<sup>-1</sup> quand il aperçoit la fillette ? La réponse doit être argumentée par des valeurs numériques.
- 5. Préciser en quoi l'utilisation du panneau 2 à côté de l'école semble justifiée ?