ÉPREUVE MATHÉMATIQUES SciencesPo - Paris, 2018

CORRIGÉ - freemaths.fr

Pour s'entraîner:

- ▶ **Problème:** Analyse I, 2^e édition Alain Piller
 - Fonctions, Intégrales, T. S freemaths.fr

Exercice:

► Thème sur freemaths.fr (selon la question)

• Suites, T. S [Q. 1, Q. 4, Q. 5 et Q. 6]

• Fonctions, Intégrales, T. S [Q. 7, Q. 8 et Q. 9]

• Probabilités Discrètes, T. S [Q. 2 et Q. 3]

• Probabilités Discrètes, T. ES [Q. 2 et Q. 3]

• Géométrie dans l'Espace, T. S [Q. 10]

PROBLÈME (8 points)

Analyse 1, 2° édition - Alain Piller freemaths.fr: Fonctions, Intégrales, T. S et T. ES

Partie A:

1. Montrons que pour tout x strictement positif, $f'(x) = 2 ax - \frac{2b}{x^3} - \frac{2 \ln(x)}{x}$

Posons:
$$f = f_1 + f_2 + f_3$$
, avec: $f_1(x) = ax^2$, $f_2(x) = \frac{b}{x^2}$ et $f_3(x) = -(\ln(x))^2$.

 f_i est dérivable sur IR comme fonction polynôme, donc dérivable sur] $0; +\infty$ [.

 f_2 est dérivable sur] 0; + ∞ [, avec pour tout $x \in$] 0; + ∞ [: $x^2 \neq 0$.

 f_3 est dérivable sur] 0; + ∞ [car la fonction " In " est dérivable sur] 0; + ∞ [.

Donc, f est dérivable sur] 0; $+\infty$ [comme somme ($f_1 + f_2 + f_3$) de 3 fonctions dérivables sur] 0; $+\infty$ [.

Ainsi, nous pouvons calculer f' pour tout $x \in]0; +\infty[$.

Pour tout
$$x \in]0; +\infty [: \bullet f'_{i}(x) = 2 ax$$

$$f'_2(x) = \frac{-2b}{x^3}$$

•
$$f'_3(x) = -2 \times (\ln(x)) \times \frac{1}{x} \text{ cad}$$
: $f'_3(x) = \frac{-2 \ln(x)}{x}$.

D'où pour tout
$$x \in]0; +\infty [: f'(x) = 2 ax - \frac{2b}{x^3} - \frac{2 \ln (x)}{x}]$$

2. Déterminons les réels a et b:

D'après l'énoncé: • Cf passe par le point A (1; 0, 5),

donc: f(1) = 0, 5,

• Cf admet une tangente horizontale au point A,

donc: f'(1) = 0.

Nous avons donc le système suivant:

$$\begin{cases} f(1) = 0,5 \\ f'(1) = 0 \end{cases} \iff \begin{cases} a+b=0,5 \\ 2a-2b=0 \end{cases} \iff \begin{cases} a+b=0,5 \\ a=b \end{cases}$$

D'où: a = 0, 25 et b = 0, 25.

Ainsi, les réels a et b ont pour valeurs: $a = \frac{1}{4}$ et $b = \frac{1}{4}$

Nous pouvons alors écrire, pour tout $x \in]0; +\infty [:$

•
$$f(x) = \frac{1}{4}x^2 + \frac{1}{4x^2} - (\ln(x))^2$$

•
$$f'(x) = \frac{1}{2}x - \frac{1}{2x^3} - \frac{2\ln(x)}{x}$$
.

Partie B:

1. a. Factorisons l'expression $2 X^2 - 4 X + 2$:

$$2X^{2} - 4X + 2 = 2(X^{2} - 2X + 1)$$

= $2(X - 1)^{2}$.

Ainsi:
$$2X^2 - 4X + 2 = 2(X - 1)^2$$
.

1. b. Déduisons-en une factorisation de l'expression $2x^4 - 4x^2 + 2$:

Posons: $X = x^2$.

D'où:
$$2X^2 - 4X + 2 = 2x^4 - 4x^2 + 2$$
.

Dans ces conditions, comme $2X^2 - 4X + 2 = 2(X - 1)^2$, une factorisation de l'expression $2x^4 - 4x^2 + 2$ s'écrit:

$$2x^4 - 4x^2 + 2 = 2(x^2 - 1)^2$$
, pour tout $x \in \mathbb{R}$.

Notons qu'on aurait pu aussi écrire: $2x^4 - 4x^2 + 2 = 2[(x - 1)(x + 1)]^2$ = $2(x - 1)^2(x + 1)^2$.

2. Déterminons le signe de l'expression $2x^4 - 4x^2 + 2$ en fonction de x:

Pour tout $x \in \mathbb{R}$, nous savons que: $2x^4 - 4x^2 + 2 = 2(x^2 - 1)^2$.

Ainsi le signe de l'expression $2x^4 - 4x^2 + 2$ dépend du signe de $(x^2 - 1)^2$.

Distinguons 2 cas: • pour
$$x = 1$$
 et $x = -1$, $(x^2 - 1)^2 = 0$,
• pour $x \in]-\infty; -1[\cup]-1; 1[\cup]1; +\infty[, (x^2 - 1)^2 > 0$.

Donc, pour tout nombre réel $x: 2x^4 - 4x^2 + 2 = 2(x^2 - 1)^2 \ge 0$.

freemaths.fr Corrigé-SciencesPo-Mathématiques-2018

Partie C:

1. Déterminons le sens de variation de la fonction g sur] 0; $+\infty$ [:

Ici: •
$$g(x) = x^2 - \frac{1}{x^2} - 4 \ln(x)$$

• $Dg =]0; +\infty[$.

Etape 1: détermination de g' pour tout $x \in]0; +\infty[$

Posons:
$$g = g_1 + g_2 + g_3$$
, avec: $g_1(x) = x^2$, $g_2(x) = -\frac{1}{x^2}$ et $g_3(x) = -4 \ln(x)$.

 g_i , est dérivable sur IR comme fonction polynôme, donc dérivable sur $]0;+\infty[$.

 g_2 est dérivable sur] 0; + ∞ [, avec pour tout $x \in$] 0; + ∞ [: $x^2 \neq 0$.

 g_3 est dérivable sur] 0; $+\infty$ [car la fonction " In " est dérivable sur] 0; $+\infty$ [.

Donc, g est dérivable sur] 0; $+\infty$ [comme somme $(g_1 + g_2 + g_3)$ de 3 fonctions dérivables sur] 0; $+\infty$ [.

Ainsi, nous pouvons calculer g' pour tout $x \in]0; +\infty[$.

Pour tout $x \in]0; +\infty [: \cdot g', (x) = 2x$

•
$$g'_{2}(x) = \frac{2}{x^{3}}$$

$$g'_3(x) = -\frac{4}{x}.$$

D'où pour tout $x \in]0; +\infty [: g'(x) = 2x + \frac{2}{x^3} - \frac{4}{x}]$

Etape 2: détermination du signe de g' pour tout $x \in]0; +\infty[$

Pour tout
$$x \in]0; +\infty [: g'(x) = 2x + \frac{2}{x^3} - \frac{4}{x}]$$

En réduisant au même dénominateur, nous obtenons, pour tout $x \in]0;+\infty[$:

$$g'(x) = \frac{2x^4 + 2 - 4x^2}{x^3}$$
 cad: $g'(x) = \frac{2x^4 - 4x^2 + 2}{x^3}$.

Or, d'après Partie B:
$$2x^4 - 4x^2 + 2 = 2(x^2 - 1)^2$$

 $2(x^2 - 1)^2 \ge 0$, pour tout $x \in \mathbb{R}$.

Donc ici, pour tout $x \in]0; +\infty[$ nous pouvons affirmer que:

•
$$x^3 > 0$$

• $g'(x) = \frac{2(x^2 - 1)^2}{x^3} \ge 0$.

Comme, pour tout $x \in]0; +\infty [, g'(x) \ge 0]$: la fonction g est croissante sur l'intervalle $]0; +\infty [$.

2. a. Calculons g (1):

Nous avons:
$$g(1) = (1)^2 - \frac{1}{(1)^2} - 4 \ln(1)$$
 cad: $g(1) = 0$.

2. b. Déduisons-en le signe de la fonction g sur] 0; +∞ [:

g(1) = 0, donc sur $]0; +\infty [$, nous allons distinguer 2 cas:

- si $x \in]0; /]$, alors: $g(x) \le g(/) = 0$ (car la fonction g est croissante sur]0; /]),
- si $x \in]1; +\infty[$, alors: $g(x) \ge g(1) = 0$ (car la fonction g est croissante sur $]1; +\infty[$).

Donc: • g est négative sur] 0; /],

• g est positive sur] $I; +\infty$ [.

Partie D:

1. Montrons que pour tout réel x strictement positif, $f(x) = f\left(\frac{1}{x}\right)$

Ici:
$$f(x) = \frac{1}{4}x^2 + \frac{1}{4x^2} - (\ln(x))^2$$

• $D_f =]0; +\infty[$.

Dans ces conditions, pour tout $x \in]0; +\infty[$:

$$f\left(\frac{l}{x}\right) = \frac{l}{4} \left(\frac{l}{x}\right)^2 + \frac{l}{4 \left(\frac{l}{x}\right)^2} - \left(\ln\left(\frac{l}{x}\right)\right)^2$$

$$= \left(\frac{1}{4} \times \frac{1}{x^2}\right) + \left(\frac{1}{4} \times \frac{1}{\frac{1}{x^2}}\right) - (-\ln(x))^2$$

$$= \left(\frac{1}{4} \times \frac{1}{x^2}\right) + \left(\frac{1}{4} \times x^2\right) - (\ln(x))^2.$$

Au total, pour tout $x \in]0; +\infty [$, nous avons: $f\left(\frac{1}{x}\right) = \frac{1}{4x^2} + \frac{x^2}{4} - (\ln(x))^2$ $= \frac{1}{4}x^2 + \frac{1}{4x^2} - (\ln(x))^2.$

Et donc:
$$f\left(\frac{1}{x}\right) = f(x)$$
, pour tout $x \in]0; +\infty[$.

2. a. Déterminons la limite de f en $+\infty$:

Pour tout
$$x \in]0; +\infty [: f(x) = \frac{1}{4}x^2 + \frac{1}{4x^2} - (\ln(x))^2]$$
$$= x^2 \left[\frac{1}{4} + \frac{1}{4x^4} - \frac{(\ln(x))^2}{x^2} \right].$$

Or:
$$\lim_{x \to +\infty} \frac{(\ln(x))^2}{x^2} = \lim_{x \to +\infty} \left(\frac{\ln(x)}{x}\right)^2$$

= 0, d'après le Théorème des Croissances comparées,

$$\lim_{x \to +\infty} \frac{1}{4x^4} = 0.$$

Ainsi:
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 \left[\frac{1}{4} + \frac{1}{4x^4} - \frac{(\ln(x))^2}{x^2} \right]$$

$$= \lim_{x \to +\infty} x^2 \left[\frac{1}{4} + 0 - 0 \right]$$

$$= \lim_{x \to +\infty} \frac{x^2}{4}.$$

Au total, la limite de
$$f$$
 en $+\infty$ est: $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2}{4}$

$$=+\infty$$
.

2. b. Déterminons la limite de f en 0+:

Nous savons que pour tout
$$x \in]0; +\infty [: f(x) = f(\frac{1}{x}).$$

Posons:
$$X = \frac{1}{x}$$
, avec: $x \in]0; +\infty[$.

Dans ces conditions: •
$$\lim_{x\to 0} X = +\infty$$
, $x > 0$

•
$$f(x) = f\left(\frac{1}{x}\right) = f(X)$$
.

Donc:
$$\lim_{x\to 0} f(x) = \lim_{X\to +\infty} f(X)$$
.
 $x>0$

Or:
$$\lim_{X\to +\infty} f(X) = +\infty$$
, d'après a.

Donc, la limite de
$$f$$
 en zéro est: $\lim_{x\to 0} f(x) = +\infty$. $x > 0$

3. a. Montrons que pour tout réel
$$x \in]0; +\infty [, f'(x) = \frac{1}{2x}g(x)]$$

D'après Partie A I., pour tout
$$x \in]0; +\infty [: f'(x) = 2ax - \frac{2b}{x^3} - 2\frac{\ln(x)}{x}]$$

Or:
$$a = \frac{1}{4}$$
 et $b = \frac{1}{4}$

D'où, pour tout
$$x \in]0; +\infty [: f'(x) = \frac{1}{2}x - \frac{1}{2x^3} - \frac{2\ln(x)}{x}].$$

Dans ces conditions, nous pouvons écrire:

$$f'(x) = \frac{1}{2x} \left[x^2 - \frac{1}{x^2} - 4 \ln(x) \right]$$

$$= \frac{1}{2x} \times g(x), car: g(x) = x^2 - \frac{1}{x^2} - 4\ln(x).$$

Au total, pour tout réel $x \in]0; +\infty [$, nous avons bien: $f'(x) = \frac{1}{2x}g(x)$.

3. b. Déduisons-en le sens de variation de f sur] $0; +\infty$ [:

Nous venons de montrer que pour tout $x \in]0; +\infty [: f'(x) = \frac{1}{2x}g(x)]$.

Or sur] 0;
$$+\infty$$
 [: $\frac{1}{2x} > 0$.

Donc: le signe de f' est le même que celui de g, sur] 0; $+\infty$ [.

Or, d'après Partie C 2. b.: • g est négative sur] 0; /],

• g est positive sur] $I_i + \infty$ [.

Ainsi: • f' est négative sur] 0; /],

• f' est positive sur] I; + ∞ [.

Et donc: • f est décroissante sur] 0; /],

• f est croissante sur] I; $+\infty$ [.

Partie E:

1. Montrons que l'équation f(x) = x admet une unique solution α sur] 0; 1]:

Posons, pour tout $x \in]0; I]$: h(x) = f(x) - x.

freemaths.fr

La question revient donc à montrer que l'équation h(x) = 0 admet une solution unique α sur]0;1].

Nous allons appliquer le théorème des valeurs intermédiaires pour répondre à cette question.

• Soit f une fonction continue sur [a; b].

Pour tout réel " K " compris entre f(a) et f(b), il existe au moins un réel " c " de [a; b] tel que: f(c) = K.

Cela signifie que: l'équation f(x) = K admet au moins une solution appartenant à [a;b].

- Si de plus, la fonction f est strictement " croissante " ou " décroissante " sur [a; b], l'équation f(x) = K admet une unique solution appartenant à [a; b].
- Ici: h est continue sur] 0; /] comme différence (f(x) x) de deux fonctions continues sur] 0; /].

• "
$$k = 0$$
 " est compris entre: $h(1) = -\frac{1}{2} < 0$

et:
$$\lim_{x\to 0} h(x) = +\infty$$
.
 $x > 0$

• h est strictement décroissante sur] 0; /] car pour tout $x \in$] 0; /]:

$$h'(x) = f'(x) - 1$$
 cad: $h'(x) = \frac{1}{2}x - \frac{1}{2x^3} - \frac{2 \ln(x)}{x} - 1 < 0$,

(f'est négative sur]0;1] d'après Partie D 3. b.)

Ainsi, d'après le théorème des valeurs intermédiaires, nous pouvons affirmer que l'équation f(x) - x = 0 (k = 0) admet une unique solution α appartenant à [0; 1], et plus exactement sur [0; 1].

Au total: h(x) = 0 admet exactement une solution unique α sur] 0; 1].

2. Montrons que l'équation $f(x) = \frac{1}{x}$ admet une unique solution β sur $f(x) = \frac{1}{x}$

D'après Partie D I., pour tout
$$x \in]0; +\infty [: f(x) = f(\frac{1}{x})]$$
.

D'où, pour tout
$$x \in] /; +\infty [$$
, nous avons: $f(x) = f(\frac{1}{x})$.

Dans ces conditions, pour tout
$$x \in] /; +\infty [: f(x) = \frac{1}{x} \iff f(\frac{1}{x}) = \frac{1}{x}]$$

Posons:
$$X = \frac{1}{x}$$
, avec: $x \in [1, +\infty)$

D'où:
$$X \in \lim_{x \to +\infty} \left(\frac{1}{x}\right); \frac{1}{1} = 0; 1[.$$

Donc:
$$f(x) = \frac{1}{x} \iff f(\frac{1}{x}) = \frac{1}{x} \iff f(X) = X, \text{ avec}: X \in]0; 1[.$$

Ainsi, d'après la question précédente, nous pouvons affirmer que l'équation f(X) = X (ou: f(X) - X = 0) sur] 0; / [admet une unique solution α .

Et nous avons:
$$X = \alpha \iff \frac{1}{x} = \alpha \iff x = \frac{1}{\alpha} = \beta$$
.

Au total, l'équation $f(x) = \frac{1}{x}$ admet bien une unique solution β sur] /; + ∞ [:

$$\beta = \frac{1}{\alpha}$$

freemaths.fr

3. Montrons que $\alpha \times \beta = 1$:

Comme nous l'avons vu à la question précédente:
$$\beta = \frac{1}{\alpha}$$
.

D'où:
$$\alpha \times \beta = 1$$
.

4. a. Écrivons un algorithme permettant d'afficher un encadrement de \propto à 10^{-2} près:

L'algorithme demandé est:

$$0, l \rightarrow a$$

$$l \rightarrow b$$

$$| \text{while} \quad b - a > 0, 0l$$

$$| \text{if} \quad h\left(\frac{a+b}{2}\right) > 0$$

$$| \text{then} \quad \frac{a+b}{2} \rightarrow a$$

$$| \text{else} \quad \frac{a+b}{2} \rightarrow b$$

$$| \text{end if}$$

$$| \text{end while}$$

$$| \text{Afficher } (a, b)$$

4. b. Donnons un encadrement de α d'amplitude 10^{-2} :

Un encadrement de α d'amplitude 10^{-2} est: $0,54 < \alpha < 0,55$.

EXERCICE: Vrai ou Faux? (12 points)

I. C'est faux.

Soient: $\cdot C_i$, le capital initial

- C_f , le capital final **cad**: au bout de 20 ans
- Γ, le taux d'intérêt annuel = 3%
- n, le nombre d'années = 20 ans.

Nous avons:
$$C_f = (I + \Gamma)^n C_i$$

= $(I, 03)^{20} C_i$
 $\approx I_1 806 C_i$.

Ainsi: le capital initial placé sera multiplié par environ 1,806 au bout de 20 ans.

Comme: 1,806 < 2, la somme totale disponible au bout de 20 ans ne sera pas supérieure ou égale au double du capital placé.

Donc l'affirmation est fausse.

2. C'est vrai.

Soit N la variable aléatoire égale au **nombre de numéros différents obtenus,** après trois tirages successifs avec remise.

Les boules sont numérotées: 1, 2 et 3.

Les valeurs que peut prendre la variable aléatoire N sont: {0,2,3}*.

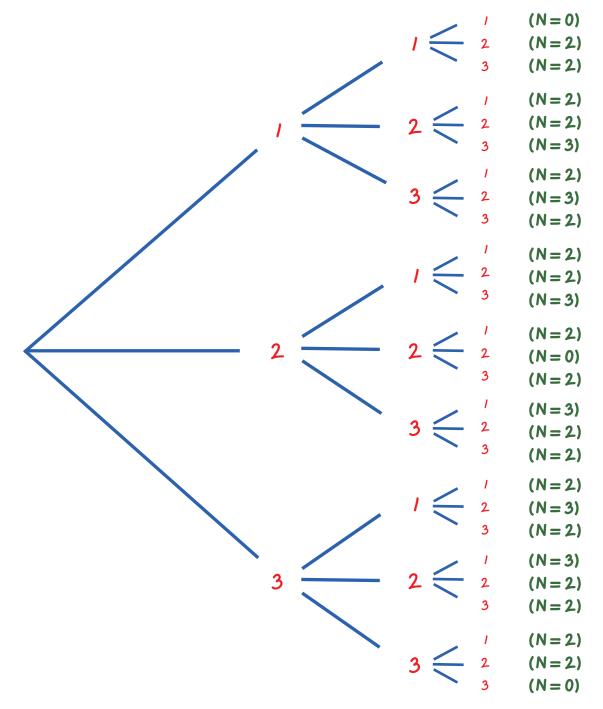
*: en effet: • soit les 3 boules ont le même numéro et donc N = 0,

- soit il y a 2 boules avec le même numéro et une 3^e avec un numéro différent et donc N=2,
- soit les 3 boules ont des numéros différents et donc N=3.

Notons que: N = 0 signifie 0 numéro différent sur les 3 boules,

- N = 2 signifie 2 numéros différents sur les 3 boules,
- N = 3 signifie 3 numéros différents sur les 3 boules.

Construisons un arbre:



D'où: • P (N = 0) = 3 x
$$\frac{1}{27}$$
 => P (N = 0) = $\frac{3}{27}$.

• P (N = 2) = 18 x
$$\frac{1}{27}$$
 => P (N = 2) = $\frac{18}{27}$

• P (N = 3) = 6 x
$$\frac{1}{27}$$
 => P (N = 3) = $\frac{6}{27}$

Dans ces conditions, la loi de probabilité de la variable aléatoire N est:

$N = n_i$	0	2	3
$P(N=n_i)$	<u>3</u>	<u>18</u>	<u>6</u>
	27	27	27

Nous pouvons remarquer que: $\frac{3}{27} + \frac{18}{27} + \frac{6}{27} = 1$.

Nous avons donc:
$$E(N) = \left(0 \times \frac{3}{27}\right) + \left(2 \times \frac{18}{27}\right) + \left(3 \times \frac{6}{27}\right)$$

cad:
$$E(N) = 2$$
.

Ainsi: l'espérance de N est égale à 2.

Comme: $2 > \frac{3}{2}$, l'espérance de N est strictement supérieure à $\frac{3}{2}$.

Donc l'affirmation est vraie.

3. C'est faux.

Soient les événements: C = "conforme", et $\overline{C} =$ "non conforme".

On désigne par X le nombre de véhicules non conformes sur un lot de 100 véhicules prélevé au hasard.

freemaths.fr

Nous sommes en présence de 100 épreuves aléatoires identiques et indépendantes.

La variable aléatoire discrète X représentant le nombre de réalisations de \overline{C} suit donc une loi binômiale de paramètres: n = 100 et p = 3%.

Et nous pouvons noter: X \ightarrow B (100; 3%).

En fait, on répète 100 fois un schéma de Bernoulli.

Ici, il s'agit de calculer: P(X=0).

(aucun véhicule de ce lot ne soit défectueux)

$$P(X = 0) = \binom{100}{0} (3\%)^0 (1 - 3\%)^{100}$$
$$= (1 - 3\%)^{100} \neq 1 - (3\%)^{100}.$$

Comme: $(1-3\%)^{100} \neq 1-(3\%)^{100}$, la probabilité qu'aucun véhicule de ce lot ne soit défectueux n'est pas égale à 1-0, 03^{100} .

Donc l'affirmation est fausse.

- 4. C'est vrai.
- 4. a. En ce qui concerne la suite (U_):

Pour tout
$$n \in IN^*$$
, $U_n = 2 + (2 + 2^2 + 2^3 + ... + 2^n)$

$$= 2 + \left[\frac{1 - 2^{n+1}}{1 - 2} - 1\right], \text{ car: } 1 + q + q^2 + q^3 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$$

$$= 2 + \left[2^{n+1} - 1 - 1\right]$$

$$= 2^{n+1}$$

$$= 4 \times (2)^{n-1}$$
.

Donc pour tout $n \in \mathbb{N}^*$: $U_n = U_1 \times (q)^{n-1}$, avec $U_1 = 4$ et q = 2.

Ainsi: la suite (U_n) est une suite géométrique de raison q=2 et de premier terme $U_n=4$.

4. b. En ce qui concerne la suite (V_n) :

Pour tout $n \in IN^*$, $V_n = U_n - I$.

Dans ces conditions:
$$V_1 = U_1 - I = 3$$
, $(U_1 = 4)$

$$V_2 = U_2 - I = 7$$
, $(U_2 = 8)$

$$V_3 = U_3 - I = 15$$
. $(U_3 = 16)$

Or:
$$\frac{V_1}{V_2} \neq \frac{V_2}{V_3}$$
 car $\frac{3}{7} \neq \frac{7}{15}$.

Ainsi: la suite (V_n) n'est pas une suite géométrique.

Donc l'affirmation est vraie.

5. C'est vrai.

Pour tout $n \in IN$, il existe un réel f tel que: $\lim_{n \to +\infty} n \cdot U_n = f$.

Dans ces conditions, nous pouvons écrire, pour tout n E IN:

$$\lim_{n \to +\infty} n \cdot U_n = f \iff \lim_{n \to +\infty} U_n = \lim_{n \to +\infty} \frac{f}{n}$$

Or:
$$\lim_{n \to +\infty} \frac{f}{n} = 0$$
, d'où $\lim_{n \to +\infty} U_n = 0$.

Ainsi: oui,
$$\lim_{n\to+\infty} U_n = 0$$
.

Donc l'affirmation est vraie.

6. C'est vrai.

Pour le justifier, nous allons avoir recours à une démonstration par récurrence.

Nous allons montrer par récurrence que:

" pour tout entier naturel n: $U_n = n + 1$ ".

Initialisation:
$$U_1 = 10 \times U_0 - 9 \times 0 - 8$$
 (car: $\forall n \in \mathbb{N}, U_{n+1} = 10 U_n - 9n - 8$)

=
$$10 \times 1 - 9 \times 0 - 8$$
, car: $U_0 = 1$, d'après l'énoncé.

D'où:
$$U_1 = 2$$
.

Et:
$$U_1 = 1 + 1 = 2$$
, car: $U_n = n + 1$.

Donc vrai au rang 11.

Hérédité: Soit $n \in IN$, supposons $U_n = n + I$

et montrons qu'alors: $U_{n+1} = (n+1) + 1$.

Supposons: $U_n = n + 1$, pour un entier naturel n fixé.

(1)

$$(1) \implies 10 \ U_{n} = 10 \ n + 10$$

$$\implies 10 \ U_{n} - 9 \ n = 10 \ n + 10 - 9 \ n$$

$$\implies 10 \ U_{n} - 9 \ n - 8 = 10 \ n + 10 - 9 \ n - 8$$

$$\implies 10 \ U_{n} - 9 \ n - 8 = n + 2$$

$$\implies 10 \ U_{n} - 9 \ n - 8 = (n + 1) + 1$$

$$\implies U_{n+1} = (n + 1) + 1 \quad (car: \ U_{n+1} = 10 \ U_{n} - 9 \ U_{n} - 8).$$

Conclusion: Pour tout entier naturel n, nous avons bien: $U_n = n + 1$.

Donc l'affirmation est vraie.

7. C'est faux.

Pour le justifier, nous allons prendre un contre exemple.

Soient f et g, deux fonctions définies sur IR comme suit:

$$\bullet f(x) = 3x + 7$$

•
$$g(x) = 3x$$
.

Nous avons: •
$$\lim_{x \to +\infty} f(x) = +\infty$$
,

•
$$\lim_{x \to +\infty} g(x) = +\infty$$
,

• pour tout réel x: f(x) > g(x) (car: 7 > 0)

Or, pour tout réel x: f(x) - g(x) = 7.

Et donc:
$$\lim_{x \to +\infty} (f(x) - g(x)) = 7.$$

freemaths.fr

Comme
$$7 \neq +\infty$$
, pour tout réel x : $\lim_{x \to +\infty} (f(x) - g(x)) \neq +\infty$.

Donc l'affirmation est fausse.

8. C'est vrai.

Pour le justifier, nous allons calculer d'une part f(2x), d'autre part $\frac{2f(x)}{1+(f(x))^2}$ et comparer les deux résultats obtenus.

Calcul de f(2x):

$$\forall x \in \mathbb{R}$$
: $f(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$, d'après l'énoncé.

Dans ces conditions:
$$f(2x) = \frac{e^{4x} - 1}{e^{4x} + 1}, \forall x \in \mathbb{R}$$
.

Calcul de
$$\frac{2 f(x)}{l + (f(x))^2}$$

$$\forall x \in \mathbb{R}$$
: $f(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$, d'après l'énoncé.

Dans ces conditions:
$$\frac{2f(x)}{l + (f(x))^2} = \frac{2\left(\frac{e^{2x} - l}{e^{2x} + l}\right)}{l + \left(\frac{e^{2x} - l}{e^{2x} + l}\right)^2}$$

$$=\frac{\frac{2(e^{2x}-1)}{e^{2x}+1}}{\frac{(e^{2x}+1)^2+(e^{2x}-1)^2}{(e^{2x}+1)^2}}$$

$$= \frac{2(e^{2x} - 1)(e^{2x} + 1)}{(e^{2x} + 1)^2 + (e^{2x} - 1)^2}$$

$$= \frac{2(e^{2x} - 1)(e^{2x} + 1)}{2(e^{4x} + 1)}$$

$$= \frac{e^{4x} - 1}{e^{4x} + 1} ((a - b)(a + b) = a^2 - b^2).$$

D'où:
$$\frac{2f(x)}{1+(f(x))^2} = \frac{e^{4x}-1}{e^{4x}+1}, \forall x \in \mathbb{R}.$$

Comme
$$f(2x) = \frac{e^{4x} - 1}{e^{4x} + 1}, \forall x \in \mathbb{R}: f(2x) = \frac{2f(x)}{1 + (f(x))^2}$$

Donc l'affirmation est vraie.

9. C'est vrai.

Pour le justifier, nous allons utiliser la formule: $\cos^2 x + \sin^2 x = 1$, $\forall x \in \mathbb{R}$.

Ici:
$$\cos^2 x + \sin^2 x = I \iff \cos^2 \left(\frac{7\pi}{12}\right) + \left(\frac{\sqrt{2} + \sqrt{6}}{4}\right)^2 = I$$

$$\iff \cos^2 \left(\frac{7\pi}{12}\right) = I - \left(\frac{\sqrt{2} + \sqrt{6}}{4}\right)^2$$

$$\iff \cos^2 \left(\frac{7\pi}{12}\right) = I - \left(\frac{8 + 2\sqrt{12}}{16}\right)$$

$$\iff \cos^2 \left(\frac{7\pi}{12}\right) = \frac{8 - 2\sqrt{12}}{16}$$

$$\iff \cos^2 \left(\frac{7\pi}{12}\right) = \frac{8 - 2\sqrt{12}}{16}$$

$$\iff$$
 $\cos^2\left(\frac{7\pi}{12}\right) = \left(\frac{\sqrt{2} - \sqrt{6}}{4}\right)^2$

$$\Rightarrow$$
 $\cos\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2} - \sqrt{6}}{4} < 0$

ou:
$$\cos\left(\frac{7\pi}{12}\right) = \frac{-\sqrt{2} + \sqrt{6}}{4} > 0.$$

Comme, d'après le cercle trigonométrique: $\cos\left(\frac{7\pi}{12}\right) < 0$, nous retiendrons

uniquement la solution
$$\cos\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2} - \sqrt{6}}{4} < 0.$$

Donc l'affirmation est vraie.

10. C'est vrai.

Pour le justifier, nous allons procéder en 3 étapes.

Étape 1: détermination des coordonnées du point B.

Le point A a pour coordonnées: A (a; a^2), avec: a > 0.

Soit le point B, avec B (x; y).

D'après l'énoncé: "B est le point d'intersection entre la parabole et la perpendiculaire à la droite (OA) passant par 0 ".

Dans ces conditions: les vecteurs \overrightarrow{OA} et \overrightarrow{OB} sont orthogonaux.

Or: A $(a; a^2)$ et B (x; y), avec: $y = x^2$ car B appartient à la parabole.

D'où:
$$\overrightarrow{OA} = \begin{pmatrix} a \\ a^2 \end{pmatrix}$$
 et $\overrightarrow{OB} = \begin{pmatrix} x \\ x^2 \end{pmatrix}$.

D'après le cours, les vecteurs \overrightarrow{OA} et \overrightarrow{OB} sont orthogonaux ssi: $OA \cdot OB = 0$.

Ici:
$$OA \cdot OB = 0 \iff (a \cdot x) + (a^2 \cdot x^2) = 0$$

$$\iff a \cdot x (1 + a \cdot x) = 0$$

$$\iff 1 + a \cdot x = 0, \text{ car: } a \cdot x \neq 0$$

$$\iff x = -\frac{1}{a}$$

D'où les coordonnées du point B sont: $B\left(-\frac{1}{a}; \frac{1}{a^2}\right)$, avec: a > 0 et $y = x^2$.

Étape 2: détermination de l'équation de la droite Δ passant par les deux points A et B.

L'équation de la droite Δ s'écrit: $y = c \cdot x + d$.

Nous devons déterminer c et d.

Le point $A \in \Delta$, d'où: $a^2 = c \cdot a + d$ (1).

Le point
$$B \in \Delta$$
, d'où: $\frac{1}{a^2} = c \cdot \left(-\frac{1}{a}\right) + d$ (2).

Dans ces conditions c et d sont solutions du système: $\begin{cases} (1) \\ . \end{cases}$

$$\begin{cases} (1) \\ (2) \end{cases} \iff \begin{cases} a^2 = c \cdot a + d \\ \frac{1}{a^2} = -\frac{c}{a} + d \end{cases} \iff \begin{cases} c \cdot a + d = a^2 \\ c \cdot a + \frac{c}{a} = a^2 - \frac{1}{a^2} \end{cases}$$

$$\begin{cases} d = a^2 - \left(a - \frac{1}{a}\right) \cdot a \\ c = a - \frac{1}{a} \end{cases}$$

$$\iff \begin{cases}
d = 1 \\
c = a - \frac{1}{a}
\end{cases}$$

Ainsi l'équation de la droite Δ est: $y = \left(a - \frac{1}{a}\right) \cdot x + 1$.

Étape 3: le point K (0; 1) appartient-il à la droite (AB) = Δ ?

L'équation de la droite Δ s'écrit: $y = \left(a - \frac{1}{a}\right) \cdot x + 1$.

Comme ici $x_k = 0$: la valeur de y_k est égale à 1, \forall a > 0.

Ainsi: oui, le point K (0; 1) appartient à la droite (AB), \forall a > 0.

Donc l'affirmation est vraie.